Tumor angiogenesis and vascular normalization: alternative therapeutic targets
Tóm tắt
Từ khóa
Tài liệu tham khảo
Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427. doi: 10.1038/nrd3455
Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307. doi: 10.1038/nature10144
Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989. doi: 10.1038/nm0901-987
Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62. doi: 10.1126/science.1104819
Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26:605–622. doi: 10.1016/j.ccell.2014.10.006
Goel S, Duda DG, Xu L et al (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121. doi: 10.1152/physrev.00038.2010
Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177. doi: 10.1083/jcb.200302047
Phng L-K, Gerhardt H (2009) Angiogenesis: a team effort coordinated by notch. Dev Cell 16:196–208. doi: 10.1016/j.devcel.2009.01.015
Blanco R, Gerhardt H (2013) VEGF and Notch in Tip and Stalk Cell Selection. Cold Spring Harb Perspect Med. doi: 10.1101/cshperspect.a006569
Jakobsson L, Franco CA, Bentley K et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12:943–953. doi: 10.1038/ncb2103
Ferrara N, Gerber H-P, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676. doi: 10.1038/nm0603-669
Benedito R, Roca C, Sörensen I et al (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135. doi: 10.1016/j.cell.2009.03.025
Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454. doi: 10.1038/nrm2406
De Smet F, Segura I, De Bock K et al (2009) Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arterioscler Thromb Vasc Biol 29:639–649. doi: 10.1161/ATVBAHA.109.185165
Lamalice L, Boeuf FL, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794. doi: 10.1161/01.RES.0000259593.07661.1e
Ridley AJ (2015) Rho GTPase signalling in cell migration. Curr Opin Cell Biol 36:103–112. doi: 10.1016/j.ceb.2015.08.005
Phng L-K, Stanchi F, Gerhardt H (2013) Filopodia are dispensable for endothelial tip cell guidance. Development 140:4031–4040. doi: 10.1242/dev.097352
Larrivée B, Freitas C, Suchting S et al (2009) Guidance of vascular development: lessons from the nervous system. Circ Res 104:428–441. doi: 10.1161/CIRCRESAHA.108.188144
Larrivée B, Freitas C, Trombe M et al (2007) Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis. Genes Dev 21:2433–2447. doi: 10.1101/gad.437807
London NR, Smith MCP, Li DY (2009) Emerging mechanisms of vascular stabilization. J Thromb Haemost JTH 7(Suppl 1):57–60. doi: 10.1111/j.1538-7836.2009.03421.x
Koch AW, Mathivet T, Larrivée B et al (2011) Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev Cell 20:33–46. doi: 10.1016/j.devcel.2010.12.001
Davis GE, Bayless KJ (2003) An integrin and Rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirc NY N 10:27–44. doi: 10.1038/sj.mn.7800175
Davis GE, Koh W, Stratman AN (2007) Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices. Birth Defects Res Part C Embryo Today Rev 81:270–285. doi: 10.1002/bdrc.20107
Sacharidou A, Stratman AN, Davis GE (2012) Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells Tissues Organs 195:122–143. doi: 10.1159/000331410
Strilić B, Kucera T, Eglinger J et al (2009) The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 17:505–515. doi: 10.1016/j.devcel.2009.08.011
Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:1276–1312. doi: 10.1101/gad.1653708
Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10:165–177. doi: 10.1038/nrm2639
Huang H, Bhat A, Woodnutt G, Lappe R (2010) Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer 10:575–585. doi: 10.1038/nrc2894
Lucke S, Levkau B (2010) Endothelial functions of sphingosine-1-phosphate. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 26:87–96. doi: 10.1159/000315109
Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16:209–221. doi: 10.1016/j.devcel.2009.01.004
Privratsky JR, Newman PJ (2014) PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res 355:607–619. doi: 10.1007/s00441-013-1779-3
Wallez Y, Huber P (2008) Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta BBA: Biomembr 1778:794–809. doi: 10.1016/j.bbamem.2007.09.003
Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncol 7:452–464. doi: 10.1215/S1152851705000232
Morikawa S, Baluk P, Kaidoh T et al (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000. doi: 10.1016/S0002-9440(10)64920-6
Abramsson A, Lindblom P, Betsholtz C (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112:1142–1151. doi: 10.1172/JCI200318549
Greenberg JI, Shields DJ, Barillas SG et al (2008) A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456:809–813. doi: 10.1038/nature07424
Ribatti D, Crivellato E (2012) Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta 1822:2–8. doi: 10.1016/j.bbadis.2010.11.010
Guo M, Breslin JW, Wu MH et al (2008) VE-cadherin and beta-catenin binding dynamics during histamine-induced endothelial hyperpermeability. Am J Physiol Cell Physiol 294:C977–C984. doi: 10.1152/ajpcell.90607.2007
Beckers CML, van Hinsbergh VWM, van Nieuw Amerongen GP (2010) Driving Rho GTPase activity in endothelial cells regulates barrier integrity. Thromb Haemost 103:40–55. doi: 10.1160/TH09-06-0403
Baluk P, Morikawa S, Haskell A et al (2003) Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163:1801–1815. doi: 10.1016/S0002-9440(10)63540-7
Inai T, Mancuso M, Hashizume H et al (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165:35–52. doi: 10.1016/S0002-9440(10)63273-7
Jain RK, Martin JD, Stylianopoulos T (2014) The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 16:321–346. doi: 10.1146/annurev-bioeng-071813-105259
Reymond N, d’Água BB, Ridley AJ (2013) Crossing the endothelial barrier during metastasis. Nat Rev Cancer 13:858–870. doi: 10.1038/nrc3628
Kim BG, Gao M-Q, Kang S et al (2017) Mechanical compression induces VEGFA overexpression in breast cancer via DNMT3A-dependent miR-9 downregulation. Cell Death Dis 8:e2646. doi: 10.1038/cddis.2017.73
Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4:806–813. doi: 10.1038/nrc1456
Giaccia AJ, Simon MC, Johnson R (2004) The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. Genes Dev 18:2183–2194. doi: 10.1101/gad.1243304
Mazzone M, Dettori D, Leite de Oliveira R et al (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136:839–851. doi: 10.1016/j.cell.2009.01.020
Marín-Hernández A, Gallardo-Pérez JC, Ralph SJ et al (2009) HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem 9:1084–1101
Darby IA, Hewitson TD (2016) Hypoxia in tissue repair and fibrosis. Cell Tissue Res 365:553–562. doi: 10.1007/s00441-016-2461-3
Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389. doi: 10.1016/j.apsb.2015.05.007
Bullen JW, Tchernyshyov I, Holewinski RJ et al (2016) Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1. Sci Signal 9:ra56. doi: 10.1126/scisignal.aaf0583
Larcher F, Franco M, Bolontrade M et al (2003) Modulation of the angiogenesis response through Ha-ras control, placenta growth factor, and angiopoietin expression in mouse skin carcinogenesis. Mol Carcinog 37:83–90. doi: 10.1002/mc.10126
Rak J, Yu JL (2004) Oncogenes and tumor angiogenesis: the question of vascular “supply” and vascular “demand”. Semin Cancer Biol 14:93–104. doi: 10.1016/j.semcancer.2003.09.014
Arbiser JL, Moses MA, Fernandez CA et al (1997) Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci USA 94:861–866
Govindarajan B, Bai X, Cohen C et al (2003) Malignant transformation of melanocytes to melanoma by constitutive activation of mitogen-activated protein kinase kinase (MAPKK) signaling. J Biol Chem 278:9790–9795. doi: 10.1074/jbc.M212929200
Sofia Vala I, Martins LR, Imaizumi N et al (2010) Low doses of ionizing radiation promote tumor growth and metastasis by enhancing angiogenesis. PLoS ONE 5:e11222. doi: 10.1371/journal.pone.0011222
Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26:489–502. doi: 10.1007/s10555-007-9094-7
Ribatti D, Djonov V (2012) Intussusceptive microvascular growth in tumors. Cancer Lett 316:126–131. doi: 10.1016/j.canlet.2011.10.040
Paku S, Dezso K, Bugyik E et al (2011) A new mechanism for pillar formation during tumor-induced intussusceptive angiogenesis: inverse sprouting. Am J Pathol 179:1573–1585. doi: 10.1016/j.ajpath.2011.05.033
Ribatti D, Nico B, Floris C et al (2005) Microvascular density, vascular endothelial growth factor immunoreactivity in tumor cells, vessel diameter and intussusceptive microvascular growth in primary melanoma. Oncol Rep 14:81–84
Maniotis AJ, Folberg R, Hess A et al (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155:739–752. doi: 10.1016/S0002-9440(10)65173-5
Paulis YWJ, Soetekouw PMMB, Verheul HMW et al (2010) Signalling pathways in vasculogenic mimicry. Biochim Biophys Acta 1806:18–28. doi: 10.1016/j.bbcan.2010.01.001
Chang YS, di Tomaso E, McDonald DM et al (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA 97:14608–14613. doi: 10.1073/pnas.97.26.14608
Ruf W, Seftor EA, Petrovan RJ et al (2003) Differential role of tissue factor pathway inhibitors 1 and 2 in melanoma vasculogenic mimicry. Cancer Res 63:5381–5389
Yang JP, Liao YD, Mai DM et al (2016) Tumor vasculogenic mimicry predicts poor prognosis in cancer patients: a meta-analysis. Angiogenesis 19:191–200. doi: 10.1007/s10456-016-9500-2
Qian C-N (2013) Hijacking the vasculature in ccRCC–co-option, remodelling and angiogenesis. Nat Rev Urol 10:300–304. doi: 10.1038/nrurol.2013.26
Lyden D, Hattori K, Dias S et al (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201. doi: 10.1038/nm1101-1194
Rafii S, Meeus S, Dias S et al (2002) Contribution of marrow-derived progenitors to vascular and cardiac regeneration. Semin Cell Dev Biol 13:61–67. doi: 10.1006/scdb.2001.0285
Patenaude A, Parker J, Karsan A (2010) Involvement of endothelial progenitor cells in tumor vascularization. Microvasc Res 79:217–223. doi: 10.1016/j.mvr.2010.01.007
Gao D, Nolan DJ, Mellick AS et al (2008) Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319:195–198. doi: 10.1126/science.1150224
Peters BA, Diaz LA, Polyak K et al (2005) Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 11:261–262. doi: 10.1038/nm1200
Larrivée B, Karsan A (2007) Involvement of marrow-derived endothelial cells in vascularization. Handb Exp Pharmacol. doi: 10.1007/978-3-540-68976-8_5
Wickersheim A, Kerber M, de Miguel LS et al (2009) Endothelial progenitor cells do not contribute to tumor endothelium in primary and metastatic tumors. Int J Cancer 125:1771–1777. doi: 10.1002/ijc.24605
Purhonen S, Palm J, Rossi D et al (2008) Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci USA 105:6620–6625. doi: 10.1073/pnas.0710516105
Larrivée B, Niessen K, Pollet I et al (2005) Minimal contribution of marrow-derived endothelial precursors to tumor vasculature. J Immunol Baltim Md 175:2890–2899
Machein MR, Renninger S, de Lima-Hahn E, Plate KH (2003) Minor contribution of bone marrow-derived endothelial progenitors to the vascularization of murine gliomas. Brain Pathol Zur Switz 13:582–597
Zentilin L, Tafuro S, Zacchigna S et al (2006) Bone marrow mononuclear cells are recruited to the sites of VEGF-induced neovascularization but are not incorporated into the newly formed vessels. Blood 107:3546–3554. doi: 10.1182/blood-2005-08-3215
Ricci-Vitiani L, Pallini R, Biffoni M et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828. doi: 10.1038/nature09557
Kaur S, Bajwa P (2014) A “tête-à tête” between cancer stem cells and endothelial progenitor cells in tumor angiogenesis. Clin Trans Oncol 16:115–121. doi: 10.1007/s12094-013-1103-4
Orth M, Lauber K, Niyazi M et al (2014) Current concepts in clinical radiation oncology. Radiat Environ Biophys 53:1–29. doi: 10.1007/s00411-013-0497-2
Busk M, Horsman MR (2013) Relevance of hypoxia in radiation oncology: pathophysiology, tumor biology and implications for treatment. Q J Nucl Med Mol Imag 57:219–234
Cosse J-P, Michiels C (2008) Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anticancer Agents Med Chem 8:790–797
Luk CK, Veinot-Drebot L, Tjan E, Tannock IF (1990) Effect of transient hypoxia on sensitivity to doxorubicin in human and murine cell lines. J Natl Cancer Inst 82:684–692
Young SD, Hill RP (1990) Effects of reoxygenation on cells from hypoxic regions of solid tumors: anticancer drug sensitivity and metastatic potential. J Natl Cancer Inst 82:371–380
Sanna K, Rofstad EK (1994) Hypoxia-induced resistance to doxorubicin and methotrexate in human melanoma cell lines in vitro. Int J Cancer 58:258–262
Viallard C, Chezal J-M, Mishellany F et al (2016) Targeting DNA repair by coDbait enhances melanoma targeted radionuclide therapy. Oncotarget 7:12927–12936. doi: 10.18632/oncotarget.7340
Klein M, Lotem M, Peretz T et al (2013) Safety and efficacy of 188-rhenium-labeled antibody to melanin in patients with metastatic melanoma. J Skin Cancer 2013:828329. doi: 10.1155/2013/828329
Huang Y, Goel S, Duda DG et al (2013) Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res 73:2943–2948. doi: 10.1158/0008-5472.CAN-12-4354
Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949. doi: 10.1038/nm1093
Movahedi K, Laoui D, Gysemans C et al (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70:5728–5739. doi: 10.1158/0008-5472.CAN-09-4672
Corzo CA, Condamine T, Lu L et al (2010) HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207:2439–2453. doi: 10.1084/jem.20100587
Leung DW, Cachianes G, Kuang WJ et al (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309
Senger DR, Galli SJ, Dvorak AM et al (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985
Crawford Y, Ferrara N (2009) VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res 335:261–269. doi: 10.1007/s00441-008-0675-8
Ohtsu A, Shah MA, Van Cutsem E et al (2011) Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J Clin Oncol 29:3968–3976. doi: 10.1200/JCO.2011.36.2236
Reck M, von Pawel J, Zatloukal P et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27:1227–1234. doi: 10.1200/JCO.2007.14.5466
Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676. doi: 10.1056/NEJMoa072113
Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134. doi: 10.1056/NEJMoa060655
Jayson GC, Kerbel R, Ellis LM, Harris AL (2016) Antiangiogenic therapy in oncology: current status and future directions. Lancet Lond Engl 388:518–529. doi: 10.1016/S0140-6736(15)01088-0
Fan F, Samuel S, Gaur P et al (2011) Chronic exposure of colorectal cancer cells to bevacizumab promotes compensatory pathways that mediate tumour cell migration. Br J Cancer 104:1270–1277. doi: 10.1038/bjc.2011.81
Widakowich C, de Castro G, de Azambuja E et al (2007) Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist 12:1443–1455. doi: 10.1634/theoncologist.12-12-1443
Tolaney SM, Boucher Y, Duda DG et al (2015) Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc Natl Acad Sci USA 112:14325–14330. doi: 10.1073/pnas.1518808112
Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563. doi: 10.1016/j.ccr.2004.10.011
Batchelor TT, Sorensen AG, di Tomaso E et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95. doi: 10.1016/j.ccr.2006.11.021
Graeber TG, Osmanian C, Jacks T et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91. doi: 10.1038/379088a0
Ebos JML, Kerbel RS (2011) Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8:210–221. doi: 10.1038/nrclinonc.2011.21
Huang Y, Yuan J, Righi E et al (2012) Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA 109:17561–17566. doi: 10.1073/pnas.1215397109
Martin JD, Fukumura D, Duda DG et al (2016) Reengineering the tumor microenvironment to alleviate hypoxia and overcome cancer heterogeneity. Cold Spring Harb Perspect Med. doi: 10.1101/cshperspect.a027094
Chen B-B, Lu Y-S, Lin C-H et al (2016) A pilot study to determine the timing and effect of bevacizumab on vascular normalization of metastatic brain tumors in breast cancer. BMC Cancer 16:466. doi: 10.1186/s12885-016-2494-8
Lin A, Hahn SM (2012) Hypoxia imaging markers and applications for radiation treatment planning. Semin Nucl Med 42:343–352. doi: 10.1053/j.semnuclmed.2012.04.002
Becker S, Bohn P, Bouyeure-Petit A-C et al (2015) Bevacizumab enhances efficiency of radiotherapy in a lung adenocarcinoma rodent model: role of αvβ3 imaging in determining optimal window. Nucl Med Biol 42:923–930. doi: 10.1016/j.nucmedbio.2015.08.002
Hapani S, Sher A, Chu D, Wu S (2010) Increased risk of serious hemorrhage with bevacizumab in cancer patients: a meta-analysis. Oncology 79:27–38. doi: 10.1159/000314980
Nalluri SR, Chu D, Keresztes R et al (2008) Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA 300:2277–2285. doi: 10.1001/jama.2008.656
Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603. doi: 10.1038/nrc2442
Xian X, Håkansson J, Ståhlberg A et al (2006) Pericytes limit tumor cell metastasis. J Clin Invest 116:642–651. doi: 10.1172/JCI25705
García-Román J, Zentella-Dehesa A (2013) Vascular permeability changes involved in tumor metastasis. Cancer Lett 335:259–269. doi: 10.1016/j.canlet.2013.03.005
Thomas M, Augustin HG (2009) The role of the Angiopoietins in vascular morphogenesis. Angiogenesis 12:125–137. doi: 10.1007/s10456-009-9147-3
Witzenbichler B, Maisonpierre PC, Jones P et al (1998) Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 273:18514–18521
Jones N, Master Z, Jones J et al (1999) Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration. J Biol Chem 274:30896–30905
Hayes AJ, Huang WQ, Mallah J et al (1999) Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc Res 58:224–237. doi: 10.1006/mvre.1999.2179
Teichert-Kuliszewska K, Maisonpierre PC, Jones N et al (2001) Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res 49:659–670
Kwak HJ, So JN, Lee SJ et al (1999) Angiopoietin-1 is an apoptosis survival factor for endothelial cells. FEBS Lett 448:249–253
Kim I, Kim JH, Moon SO et al (2000) Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Oncogene 19:4549–4552. doi: 10.1038/sj.onc.1203800
Holash J, Wiegand SJ, Yancopoulos GD (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18:5356–5362. doi: 10.1038/sj.onc.1203035
Nasarre P, Thomas M, Kruse K et al (2009) Host-derived angiopoietin-2 affects early stages of tumor development and vessel maturation but is dispensable for later stages of tumor growth. Cancer Res 69:1324–1333. doi: 10.1158/0008-5472.CAN-08-3030
Leow CC, Coffman K, Inigo I et al (2012) MEDI3617, a human anti-angiopoietin 2 monoclonal antibody, inhibits angiogenesis and tumor growth in human tumor xenograft models. Int J Oncol 40:1321–1330. doi: 10.3892/ijo.2012.1366
Holopainen T, Saharinen P, D’Amico G et al (2012) Effects of angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst 104:461–475. doi: 10.1093/jnci/djs009
Peterson TE, Kirkpatrick ND, Huang Y et al (2016) Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc Natl Acad Sci USA 113:4470–4475. doi: 10.1073/pnas.1525349113
Kloepper J, Riedemann L, Amoozgar Z et al (2016) Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci USA 113:4476–4481. doi: 10.1073/pnas.1525360113
Coxon A, Bready J, Min H et al (2010) Context-dependent role of angiopoietin-1 inhibition in the suppression of angiogenesis and tumor growth: implications for AMG 386, an angiopoietin-1/2-neutralizing peptibody. Mol Cancer Ther 9:2641–2651. doi: 10.1158/1535-7163.MCT-10-0213
Mita AC, Takimoto CH, Mita M et al (2010) Phase 1 study of AMG 386, a selective angiopoietin 1/2-neutralizing peptibody, in combination with chemotherapy in adults with advanced solid tumors. Clin Cancer Res 16:3044–3056. doi: 10.1158/1078-0432.CCR-09-3368
Monk BJ, Poveda A, Vergote I et al (2016) Final results of a phase 3 study of trebananib plus weekly paclitaxel in recurrent ovarian cancer (TRINOVA-1): long-term survival, impact of ascites, and progression-free survival-2. Gynecol Oncol 143:27–34. doi: 10.1016/j.ygyno.2016.07.112
Goel S, Gupta N, Walcott BP et al (2013) Effects of vascular-endothelial protein tyrosine phosphatase inhibition on breast cancer vasculature and metastatic progression. J Natl Cancer Inst 105:1188–1201. doi: 10.1093/jnci/djt164
Park J-S, Kim I-K, Han S et al (2016) Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 30:953–967. doi: 10.1016/j.ccell.2016.10.018
Chakroborty D, Sarkar C, Yu H et al (2011) Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Kruppel-like factor-2 expression in tumor endothelial cells. Proc Natl Acad Sci USA 108:20730–20735. doi: 10.1073/pnas.1108696108
Al-Husein B, Goc A, Somanath PR (2013) Suppression of interactions between prostate tumor cell integrin αvβ3 and endothelial ICAM-1 by simvastatin inhibits prostate cancer micrometastasis. J Cell Physiol 228:2139. doi: 10.1002/jcp.24381
Heldin C-H (2013) Targeting the PDGF signaling pathway in tumor treatment. Cell Commun Signal CCS 11:97. doi: 10.1186/1478-811X-11-97
Huang J, Soffer SZ, Kim ES et al (2004) Vascular remodeling marks tumors that recur during chronic suppression of angiogenesis. Mol Cancer Res MCR 2:36–42
Bergers G, Song S, Meyer-Morse N et al (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295. doi: 10.1172/JCI200317929
Erber R, Thurnher A, Katsen AD et al (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 18:338–340. doi: 10.1096/fj.03-0271fje
Timke C, Zieher H, Roth A et al (2008) Combination of vascular endothelial growth factor receptor/platelet-derived growth factor receptor inhibition markedly improves radiation tumor therapy. Clin Cancer Res 14:2210–2219. doi: 10.1158/1078-0432.CCR-07-1893
Hawthorne T, Giot L, Blake L et al (2008) A phase I study of CR002, a fully-human monoclonal antibody against platelet-derived growth factor-D. Int J Clin Pharmacol Ther 46:236–244
Jayson GC, Parker GJM, Mullamitha S et al (2005) Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab’, leads to fluid accumulation and is associated with increased tumor vascularized volume. J Clin Oncol 23:973–981. doi: 10.1200/JCO.2005.01.032
Shen J, Vil MD, Prewett M et al (2009) Development of a fully human anti-PDGFRbeta antibody that suppresses growth of human tumor xenografts and enhances antitumor activity of an anti-VEGFR2 antibody. Neoplasia NY N 11:594–604
Falcon BL, Pietras K, Chou J et al (2011) Increased vascular delivery and efficacy of chemotherapy after inhibition of platelet-derived growth factor-B. Am J Pathol 178:2920. doi: 10.1016/j.ajpath.2011.02.019
Lu C, Shahzad MMK, Moreno-Smith M et al (2010) Targeting pericytes with a PDGF-B aptamer in human ovarian carcinoma models. Cancer Biol Ther 9:176
Davis DW, Takamori R, Raut CP et al (2005) Pharmacodynamic analysis of target inhibition and endothelial cell death in tumors treated with the vascular endothelial growth factor receptor antagonists SU5416 or SU6668. Clin Cancer Res 11:678–689
Nisancioglu MH, Betsholtz C, Genové G (2010) The absence of pericytes does not increase the sensitivity of tumor vasculature to vascular endothelial growth factor-A blockade. Cancer Res 70:5109–5115. doi: 10.1158/0008-5472.CAN-09-4245
Kim J, de Sampaio PC, Lundy DM et al (2016) Heterogeneous perivascular cell coverage affects breast cancer metastasis and response to chemotherapy. JCI Insight 1:e90733. doi: 10.1172/jci.insight.90733
McCarty MF, Somcio RJ, Stoeltzing O et al (2007) Overexpression of PDGF-BB decreases colorectal and pancreatic cancer growth by increasing tumor pericyte content. J Clin Invest 117:2114. doi: 10.1172/JCI31334
Reis M, Czupalla CJ, Ziegler N et al (2012) Endothelial Wnt/β-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression. J Exp Med 209:1611. doi: 10.1084/jem.20111580
Liu J, Liao S, Huang Y et al (2011) PDGF-D improves drug delivery and efficacy via vascular normalization, but promotes lymphatic metastasis by activating CXCR4 in breast cancer. Clin Cancer Res 17:3638–3648. doi: 10.1158/1078-0432.CCR-10-2456
Lamouille S, Mallet C, Feige J-J, Bailly S (2002) Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100:4495–4501. doi: 10.1182/blood.V100.13.4495
Suzuki Y, Ohga N, Morishita Y et al (2010) BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci 123:1684–1692. doi: 10.1242/jcs.061556
Valdimarsdottir G, Goumans M-J, Rosendahl A et al (2002) Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 106:2263–2270
Itoh F, Itoh S, Goumans M-J et al (2004) Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J 23:541–551. doi: 10.1038/sj.emboj.7600065
Larrivée B, Prahst C, Gordon E et al (2012) ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell 22:489–500. doi: 10.1016/j.devcel.2012.02.005
Rostama B, Turner JE, Seavey GT et al (2015) DLL4/Notch1 and BMP9 interdependent signaling induces human endothelial cell quiescence via P27KIP1 and thrombospondin-1. Arterioscler Thromb Vasc Biol 35:2626–2637. doi: 10.1161/ATVBAHA.115.306541
Scharpfenecker M, van Dinther M, Liu Z et al (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120:964–972. doi: 10.1242/jcs.002949
David L, Mallet C, Keramidas M et al (2008) Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res 102:914–922. doi: 10.1161/CIRCRESAHA.107.165530
Gupta S, Gill D, Pal SK, Agarwal N (2015) Activin receptor inhibitors–dalantercept. Curr Oncol Rep 17:14. doi: 10.1007/s11912-015-0441-5
Mitchell D, Pobre EG, Mulivor AW et al (2010) ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol Cancer Ther 9:379–388. doi: 10.1158/1535-7163.MCT-09-0650
Makker V, Filiaci VL, Chen L-M et al (2015) Phase II evaluation of dalantercept, a soluble recombinant activin receptor-like kinase 1 (ALK1) receptor fusion protein, for the treatment of recurrent or persistent endometrial cancer: an NRG Oncology/Gynecologic Oncology Group Study 0229N. Gynecol Oncol 138:24–29. doi: 10.1016/j.ygyno.2015.04.006
Wang X, Solban N, Khanna P et al (2016) Inhibition of ALK1 signaling with dalantercept combined with VEGFR TKI leads to tumor stasis in renal cell carcinoma. Oncotarget. doi: 10.18632/oncotarget.9621
van Meeteren LA, Thorikay M, Bergqvist S et al (2012) Anti-human activin receptor-like kinase 1 (ALK1) antibody attenuates bone morphogenetic protein 9 (BMP9)-induced ALK1 signaling and interferes with endothelial cell sprouting. J Biol Chem 287:18551–18561. doi: 10.1074/jbc.M111.338103
Necchi A, Giannatempo P, Mariani L et al (2014) PF-03446962, a fully-human monoclonal antibody against transforming growth-factor β (TGFβ) receptor ALK1, in pre-treated patients with urothelial cancer: an open label, single-group, phase 2 trial. Invest New Drugs 32:555–560. doi: 10.1007/s10637-014-0074-9
Wilson CW, Ye W (2014) Regulation of vascular endothelial junction stability and remodeling through Rap1-Rasip1 signaling. Cell Adhes Migr 8:76–83
Maharjan S, Kim K, Agrawal V et al (2013) Sac-1004, a novel vascular leakage blocker, enhances endothelial barrier through the cAMP/Rac/cortactin pathway. Biochem Biophys Res Commun 435:420–427. doi: 10.1016/j.bbrc.2013.04.104
Agrawal V, Maharjan S, Kim K et al (2014) Direct endothelial junction restoration results in significant tumor vascular normalization and metastasis inhibition in mice. Oncotarget 5:2761–2777
Lee K, Agrawal V, Kim K et al (2014) Combined effect of vascular-leakage-blocker Sac-1004 and antiangiogenic drug sunitinib on tumor angiogenesis. Biochem Biophys Res Commun 450:1320–1326. doi: 10.1016/j.bbrc.2014.06.139
Loboda A, Jozkowicz A, Dulak J (2010) HIF-1 and HIF-2 transcription factors–similar but not identical. Mol Cells 29:435–442. doi: 10.1007/s10059-010-0067-2
Skuli N, Liu L, Runge A et al (2009) Endothelial deletion of hypoxia-inducible factor-2alpha (HIF-2alpha) alters vascular function and tumor angiogenesis. Blood 114:469–477. doi: 10.1182/blood-2008-12-193581
Le Bras A, Lionneton F, Mattot V et al (2007) HIF-2alpha specifically activates the VE-cadherin promoter independently of hypoxia and in synergy with Ets-1 through two essential ETS-binding sites. Oncogene 26:7480–7489. doi: 10.1038/sj.onc.1210566
Kleibeuker EA, Fokas E, Allen PD et al (2016) Low dose angiostatic treatment counteracts radiotherapy-induced tumor perfusion and enhances the anti-tumor effect. Oncotarget. doi: 10.18632/oncotarget.12814
Zhang B, Shi W, Jiang T et al (2016) Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy. Oncotarget 7:62607–62618. doi: 10.18632/oncotarget.11546
Maes H, Kuchnio A, Peric A et al (2014) Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell 26:190–206. doi: 10.1016/j.ccr.2014.06.025
Liu F, Wang P, Jiang X et al (2008) Antisense hypoxia-inducible factor 1alpha gene therapy enhances the therapeutic efficacy of doxorubicin to combat hepatocellular carcinoma. Cancer Sci 99:2055–2061. doi: 10.1111/j.1349-7006.2008.00905.x
Daskalow K, Rohwer N, Raskopf E et al (2010) Role of hypoxia-inducible transcription factor 1alpha for progression and chemosensitivity of murine hepatocellular carcinoma. J Mol Med Berl Ger 88:817–827. doi: 10.1007/s00109-010-0623-4
Choi SH, Shin HW, Park JY et al (2010) Effects of the knockdown of hypoxia inducible factor-1α expression by adenovirus-mediated shRNA on angiogenesis and tumor growth in hepatocellular carcinoma cell lines. Korean J Hepatol 16:280–287. doi: 10.3350/kjhep.2010.16.3.280