Pectin biosynthesis pathways are adapted to higher rhamnogalacturonan formation in lignocellulosic jute (Corchorus spp.)
Tóm tắt
Pectin and lignin are two enigmatic macromolecular components of cell wall, which are spatially and temporally deposited during plant growth. While the former is important for primary growth, the latter accumulates during secondary growth. With the evolution of land plants, the structural complexity of pectin increased to protect cell walls against the intrusion of pectinolytic pathogens besides offering multiple choices for its interaction with lignin. We reconstructed pectin biosynthesis pathways in an annual lignocellulosic bast fibre-producing crop jute (Corchorus spp.) from hypocotyl transcriptomes and identified 27 isoforms of 17 genes and 12 isoforms of galacturonosyltransferase involved in nucleotide-sugar interconversion and pectin polymerization, respectively. Salvage pathways were found to be functional for replenishing nucleotide sugars in jute hypocotyls. Phylogenetic analyses revealed that the genes of pectin biosynthesis pathways are well conserved across taxa. For significant upregulation of the rhamnose biosynthesis gene (RHM1), we traced its evolution, identified its two-domain protein structure proposed to have been evolved from charophycean green algae and generated a structural model explaining its functional conservation. Retting of jute stem with pectinolytic bacteria showed that pectin complexity and its interaction with lignin play crucial roles in resisting cell wall deconstruction that may have accrued from increased rhamnogalacturonan biosynthesis.
Tài liệu tham khảo
Alford SR, Rangarajan P, Williams P, Gillaspy GE (2012) Myo-Inositol oxygenase is required for responses to low energy conditions in Arabidopsis thaliana. Front Plant Sci 3:69. https://doi.org/10.3389/fpls.2012.00069
Alonso-Simón A, García-Angulo P, Mélida H, Encina A, Álvarez JM, Acebes JL (2011) The use of FTIR spectroscopy to monitor modifications in plant cell wall architecture caused by cellulose biosynthesis inhibitors. Plant Signal Behav 6:1104–1110. https://doi.org/10.4161/psb.6.8.15793
Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Annu Rev Plant Biol 64:747–779. https://doi.org/10.1146/annurev-arplant-042811-105534
Atmodjo MA, Sakuragi Y, Zhu X, Burrell AJ, Mohanty SS, Atwood JA III, Orlando R, Scheller HV, Mohnen D (2011) Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan: galacturonosyltransferase complex. Proc Natl Acad Sci USA 108:20225–20230. https://doi.org/10.1073/pnas.1112816108
Bhattacharyya SK, Banerjee SK, Basak MK, Day A, Debsarkar NL (1987) Pulping of jute stick by a microbial method. Biol Wastes 19:233–236. https://doi.org/10.1016/0269-7483(87)90056-5
Brett C, Waldron K (1990) Physiology and biochemistry of plant cell walls, vol 2. Unwin Hyman Ltd., London
Butchosa N, Leijon F, Bulone V, Zhou Q (2019) Stronger cellulose microfibril network structure through the expression of cellulose-binding modules in plant primary cell walls. Cellulose 26:3083–3094. https://doi.org/10.1007/s10570-019-02285-4
Canteri MHG, Renard CMGC, Le Bourvellec C, Bureau S (2019) ATR-FTIR spectroscopy to determine cell wall composition: Application on a large diversity of fruits and vegetables. Carbohydr Polym 212:186–196. https://doi.org/10.1016/j.carbpol.2019.02.021
Chakraborty A, Sarkar D, Satya P, Karmakar PG, Singh NK (2015) Pathways associated with lignin biosynthesis in lignomaniac jute fibres. Mol Genet Genom 290:1523–1542. https://doi.org/10.1007/s00438-015-1013-y
Clifford SC, Arndt SK, Popp M, Jones HG (2002) Mucilages and polysaccharides in Ziziphus species (Rhamnaceae): localization, composition and physiological roles during drought-stress. J Exp Bot 53:131–138. https://doi.org/10.1093/jexbot/53.366.131
Conrad K (2008) Correlation between the distribution of lignin and pectin and distribution of sorbed metal ions (lead and zinc) on coir (Cocos nucifera L.). Bioresour Technol 99:8476–8484. https://doi.org/10.1016/j.biortech.2007.08.088
Dai X, Zhao G, Jiao T, Wu Y, Li X, Zhou K, Gao L, Xia T (2018) Involvement of three CsRHM genes from Camellia sinensis in UDP-Rhamnose biosynthesis. J Agric Food Chem 66:7139–7149. https://doi.org/10.1021/acs.jafc.8b01870
Das S, Majumdar B, Saha AR (2015) Biodegradation of plant pectin and hemicelluloses with three novel Bacillus pumilus strains and their combined application for quality jute fibre production. Agric Res 4:354–364. https://doi.org/10.1007/s40003-015-0188-0
Del Rio JC, Rencoret J, Marques G, Li J, Gellerstedt G, Jimenez-Barbero J, Martinez AT, Gutierrez A (2009) Structural characterization of the lignin from jute (Corchorus capsularis) fibers. J Agric Food Chem 57:10271–10281. https://doi.org/10.1021/jf900815x
Domozych DS, Sørensen I, Popper ZA, Ochs J, Andreas A, Fangel JU, Pielach A, Sacks C, Brechka H, Ruisi-Besares P, Willats WGT, Rose JKC (2014) Pectin metabolism and assembly in the cell wall of the charophytic green alga Penium margaritaceum. Plant Physiol 165:105–118. https://doi.org/10.1104/pp.114.236257
Dubey A, Jangir H, Verma S, Saxena M, Sarkar S, Philip D, Das M (2018) Biocharring of natural fibers of insect and plant origin: a green route for the production of carbon-based charge storage nanomaterials. Mater Renew Sustain Energy 7:20. https://doi.org/10.1007/s40243-018-0127-7
Fromm J (ed) (2013) Cellular Aspects of Wood Formation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36491-4
Ghosh T (1983) Handbook on jute, FAO Plant Production and Protection Paper 51. FAO, Rome
Golz JF, Allen PJ, Li SF, Parish RW, Jayawardana NU, Bacic A, Doblin MS (2018) Layers of regulation—insights into the role of transcription factors controlling mucilage production in the Arabidopsis seed coat. Plant Sci 272:179–192. https://doi.org/10.1016/j.plantsci.2018.04.021
Graña E, Sotelo T, Díaz-Tielas C, Araniti F, Krasuska U, Bogatek R, Reigosa MJ, Sánchez-Moreiras AM (2013) Citral induces auxin and ethylene-mediated malformations and arrests cell division in Arabidopsis thaliana roots. J Chem Ecol 39:271–282. https://doi.org/10.1007/s10886-013-0250-y
Ishii T (1997) Structure and function of feruloylated polysaccharides. Plant Sci 127:111–127. https://doi.org/10.1016/S0168-9452(97)00130-1
Islam M, Saito JA, Emdad E, Ahmed B, Islam M, Halim A, Hossen Q, Hossain M, Ahmed R, Hossain M, Kabir S, Khan M, Khan M, Hasan R, Aktar N, Honi U, Islam R, Rashid M, Wan X, Hou S, Haque T, Azam M, Moosa M, Elias SM, Hasan MAM, Mahmood N, Shafiuddin M, Shahid S, Shommu N, Jahan S, Roy S, Chowdhury A, Akhand A, Nisho G, Uddin K, Rabeya T, Hoque ESM, Snigdha A, Mortoza S, Matin S, Islam M, Lashkar MZH, Zaman M, Yuryev A, Uddin M, Rahman M, Haque M, Alam M, Khan H, Alam M (2017) Comparative genomics of two jute species and insight into fibre biogenesis. Nat Plants 3:16223. https://doi.org/10.1038/nplants.2016.223
Islam MS, Haque MS, Islam MM, Emdad EM, Halim A, Hossen QMM, Hossain MZ, Ahmed B, Rahim S, Rahman MS, Alam MM, Hou SB, Wan XH, Saito JA, Alam M (2012) Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics 13:493. https://doi.org/10.1186/1471-2164-13-493
Jahan MS, Chowdhury DAN, Islam MK, Moeiz SMI (2007) Characterization of lignin isolated from some nonwood available in Bangladesh. Bioresour Technol 98:465–469. https://doi.org/10.1016/j.biortech.2006.01.005
Kundu A, Sarkar D, Mandal NA, Sinha MK, Mahapatra BS (2012) A secondary phloic (bast) fibre-shy (bfs) mutant of dark jute (Corchorus olitorius L.) develops lignified fibre cells but is defective in cambial activity. Plant Growth Regul 67:45–55. https://doi.org/10.1007/s10725-012-9660-z
Lairez D, Cathala B, Monties B, Bedos-Belval F, Duran H, Gorrichon L (2005) Aggregation during coniferyl alcohol polymerization in pectin solution: a biomimetic approach of the first steps of lignification. Biomacromol 6:763–774. https://doi.org/10.1021/bm049390y
Meijer WJM, Vertregt N, Rutgers B, van de Waart M (1995) The pectin content as a measure of the retting and rettability of flax. Ind Crops Prod 4:273–284. https://doi.org/10.1016/0926-6690(95)00041-0
Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277. https://doi.org/10.1016/j.pbi.2008.03.006
Mosihuzzaman M, Theander O, Åman P (1982) Analysis of carbohydrates in the jute plant (Corchorus capsularis). J Sci Food Agric 33:1207–1212. https://doi.org/10.1002/jsfa.2740331206
O’Rourke C, Gregson T, Murray L, Sadler IH, Fry SC (2015) Sugar composition of the pectic polysaccharides of charophytes, the closest algal relatives of land-plants: presence of 3-O-methyl-D-galactose residues. Ann Bot 116:225–236. https://doi.org/10.1093/aob/mcv089
Ohtani K, Okai K, Yamashita U, Yuasa I, Misaki A (1995) Characterization of an acidic polysaccharide isolated from the leaves of Corchorus olitorius (moroheiya). Biosci Biotechnol Biochem 59:378–381. https://doi.org/10.1271/bbb.59.378
Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568. https://doi.org/10.1111/j.1365-313X.2008.03463.x
Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Höfte H (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol 21:1720–1726. https://doi.org/10.1016/j.cub.2011.08.057
Paynel F, Leroux C, Surcouf O, Schaumann A, Pelloux J, Driouich A, Mollet JC, Lerouge P, Lehner A, Mareck A (2014) Kiwi fruit PMEI inhibits PME activity, modulates root elongation and induces pollen tube burst in Arabidopsis thaliana. Plant Growth Regul 74:285–297. https://doi.org/10.1007/s10725-014-9919-7
Rahman MS (2010) Jute—a versatile natural fibre. Cultivation, extraction and processing. In: Müssig J (ed) Industrial applications of natural fibers. Wiley, Bremen, pp 135–163
Ramos AM, Gally M, Szapiro G, Itzcovich T, Carabajal M, Levin L (2016) In vitro growth and cell wall degrading enzyme production by Argentinean isolates of Macrophomina phaseolina, the causative agent of charcoal rot in corn. Rev Argent Microbiol 48:267–273. https://doi.org/10.1016/j.ram.2016.06.002
Rao X, Shen H, Pattathil S, Hahn MG, Gelineo-Albersheim I, Mohnen D, Pu Y, Ragauskas AJ, Chen X, Chen F, Dixon RA (2017) Dynamic changes in transcriptome and cell wall composition underlying brassinosteroid-mediated lignification of switchgrass suspension cells. Biotechnol Biofuel 10:266. https://doi.org/10.1186/s13068-017-0954-2
Reboul R, Geserick C, Pabst M, Frey B, Wittmann D, Lütz-Meindl U, Léonard R, Tenhaken R (2011) Down-regulation of UDP-glucuronic acid biosynthesis leads to swollen plant cell walls and severe developmental defects associated with changes in pectic polysaccharides. J Biol Chem 286(46):39982–39992. https://doi.org/10.1074/jbc.M111.255695
Reiter WD (2008) Biochemical genetics of nucleotide sugar interconversion reactions. Curr Opin Plant Biol 11:236–243. https://doi.org/10.1016/j.pbi.2008.03.009
Rioux D, Nicole M, Simard M, Ouellette GB (1998) Immunocytochemical evidence that secretion of pectin occurs during gel (gum) and tylosis formation in trees. Phytopathol 88:494–505. https://doi.org/10.1094/PHYTO.1998.88.6.494
Saito M, Kondo Y, Fukuda H (2018) BES1 and BZR1 redundantly promote phloem and xylem differentiation. Plant Cell Physiol 59:590–600. https://doi.org/10.1093/pcp/pcy012
Sarkar D, Mahato AK, Satya P, Kundu A, Singh S, Jayaswal PK, Singh A, Bahadur K, Pattnaik S, Singh N, Chakraborty A, Mandal NA, Das D, Basu T, Sevanthi AM, Saha D, Datta S, Kar CS, Mitra J, Datta K, Karmakar PG, Sharma TR, Mohapatra T, Singh NK (2017) The draft genome of Corchorus olitorius cv. JRO-524 (Navin). Genomics Data 12:151–154. https://doi.org/10.1016/j.gdata.2017.05.007
Sarkar D, Satya P, Mandal NA, Das D, Karmakar PG, Singh NK (2016) Jute genomics: emerging resources and tools for molecular breeding. In: Ramawat K, Ahuja M (eds) Fiber plants sustainable development and biodiversity. Springer, Cham, pp 155–200. https://doi.org/10.1007/978-3-319-44570-0_9
Satya P, Chakraborty A, Sarkar D, Karan M, Das D, Mandal NA, Saha D, Datta S, Ray S, Kar CS, Karmakar PG (2018) Transcriptome profiling uncovers β-galactosidases of diverse domain classes influencing hypocotyl development in jute (Corchorus capsularis L.). Phytochemistry 156:20–32. https://doi.org/10.1016/j.phytochem.2018.08.017
Satya P, Maiti RK (2013) Bast and leaf fibre crops: kenaf, hemp, jute, Agave etc. In: Singh BP (ed) Biofuel crops production physiology and genetics. CAB International, Wallingford, pp 292–311
Seitz B, Klos C, Wurm M, Tenhaken R (2000) Matrix polysaccharide precursors in Arabidopsis cell walls are synthesized by alternate pathways with organ-specific expression patterns. Plant J 21:537–546. https://doi.org/10.1046/j.1365-313x.2000.00696.x
Silva IR, Jers C, Meyer AS, Mikkelsen JD (2016) Rhamnogalacturonan I modifying enzymes: an update. New Biotechnol 33:41–54. https://doi.org/10.1016/j.nbt.2015.07.008
Sørensen I, Pettolino FA, Bacic A, Ralph J, Lu F, O’Neill MA, Fei Z, Rose JKC, Domozych DS, Willats WGT (2011) The Charophycean green algae provide insights into the early origins of plant cell walls. Plant J 68:201–211. https://doi.org/10.1111/j.1365-313X.2011.04686.x
Sterling C (1970) Crystal structure of ruthenium red and stereochemistry of its pectic stain. Amer J Bot 57:172–175
Sterling JD, Atmodjo MA, Inwood SE, Kolli VSK, Quigley HF, Hahn MG, Mohnen D (2006) Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc Natl Acad Sci USA 103:5236–5241. https://doi.org/10.1073/pnas.0600120103
Sun Q, Zhang N, Wang J, Zhang H, Li D, Shi J, Li R, Weeda S, Zhao B, Ren S, Guo YD (2015) Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. J Exp Bot 66:657–668. https://doi.org/10.1093/jxb/eru332
Oka T, Nemato T, Jigami Y (2007) Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-l-rhamnose conversion. J Biol Chem 282:5389–5403. https://doi.org/10.1074/jbc.M610196200
Takenaka Y, Kato K, Ogawa-Ohnishi M, Tsuruhama K, Kajiura H, Yagyu K, Takeda A, Takeda Y, Kunieda T, Hara-Nishimura I, Kuroha T, Nishitani K, Matsubayashi Y, Ishimizu T (2018) Pectin RG-I rhamnosyltransferases represent a novel plant-specific glycosyltransferase family. Nat Plants 4:669–676. https://doi.org/10.1038/s41477-018-0217-7
Tavares EQP, De Souza AP, Buckeridge MS (2015) How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass. J Exp Bot 66:4133–4143. https://doi.org/10.1093/jxb/erv171
Taylor KACC (1993) A colorirnetric method for the quantitation of galacturonic acid. Appl Biochem Biotechnol 43:51–54. https://doi.org/10.1007/BF02916430
Voxeur A, Soubigou-Taconnat L, Legée F, Sakai K, Antelme S, Durand-Tardif M, Lapierre C, Sibout R (2017) Altered lignification in mur1-1 a mutant deficient in GDP-l-fucose synthesis with reduced RG-II cross linking. PLoS ONE 12:e0184820. https://doi.org/10.1371/journal.pone.0184820
Wang Y, Huang J, Li Y, Xiong K, Wang Y, Li F, Liu M, Wu Z, Tu Y, Peng L (2015) Ammonium oxalate-extractable uronic acids positively affect biomass enzymatic digestibility by reducing lignocellulose crystallinity in Miscanthus. Bioresour Technol 196:391–398. https://doi.org/10.1016/j.biortech.2015.07.099
Wydra K, Beri H (2006) Structural changes of homogalacturonan, rhamnogalacturonan I and arabinogalactan protein in xylem cell walls of tomato genotypes in reaction to Ralstonia solanacearum. Physiol Mol Plant Pathol 68:41–50. https://doi.org/10.1016/j.pmpp.2006.06.001
Zhu CQ, Hu WJ, Cao XC, Zhu LF, Bai ZG, Huang J, Liang QD, Jin QY, Zhang JH (2020) Role of salicylic acid in alleviating the inhibition of root elongation by suppressing ethylene emission in rice under Al toxicity conditions. Plant Growth Regul 90:475–487. https://doi.org/10.1007/s10725-019-00554-7