Heartbeat classification using disease-specific feature selection

Computers in Biology and Medicine - Tập 46 - Trang 79-89 - 2014
Zhancheng Zhang1, Jun Dong1, Xiaoqing Luo2, Kup-Sze Choi3, Xiaojun Wu2
1Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou, 215123, China
2School of Internet of Things, Jiangnan University, Wuxi 214122, China
3Centre for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong

Tài liệu tham khảo

Amann, 2007, Detecting ventricular fibrillation by time-delay methods, IEEE Trans. Biomed. Eng., 54, 174, 10.1109/TBME.2006.880909 Irusta, 2009, A least mean-square filter for the estimation of the cardiopulmonary resuscitation artifact based on the frequency of the compressions, IEEE Trans. Biomed. Eng., 56, 1052, 10.1109/TBME.2008.2010329 Aramendi, 2010, Ecg spectral and morphological parameters reviewed and updated to detect adult and paediatric life-threatening arrhythmia, Physiol. Meas., 31, 749, 10.1088/0967-3334/31/6/002 Martis, 2009, A two-stage mechanism for registration and classification of ECG using gaussian mixture model, Pattern Recognit., 42, 2979, 10.1016/j.patcog.2009.02.008 ul Amir Afsar Minhas, 2008, Robust electrocardiogram beat classification using discrete wavelet transform, Physiol. Meas., 29, 555, 10.1088/0967-3334/29/5/003 de Chazal, 2004, Automatic classification of heartbeats using ecg morphology and heartbeat interval features, IEEE Trans. Biomed. Eng., 51, 1196, 10.1109/TBME.2004.827359 Llamedo, 2011, Heartbeat classification using feature selection driven by database generalization criteria, IEEE Trans. Biomed. Eng., 58, 616, 10.1109/TBME.2010.2068048 Ye, 2012, Heartbeat classification using morphological and dynamic features of ECG signals, IEEE Trans. Biomed. Eng., 59, 2930, 10.1109/TBME.2012.2213253 de Lannoy, 2012, Weighted conditional random fields for supervised interpatient heartbeat classification, IEEE Trans. Biomed. Eng., 59, 241, 10.1109/TBME.2011.2171037 Goldberger, 2000, Physiobank, physiotoolkit, and physionet, Circulation, 101, e215, 10.1161/01.CIR.101.23.e215 Moody, 2001, The impact of the MIT-BIH arrhythmia database, IEEE Eng. Med. Biol. Mag., 20, 45, 10.1109/51.932724 de Chazal, 2006, A patient-adapting heartbeat classifier using ecg morphology and heartbeat interval features, IEEE Trans. Biomed. Eng., 53, 2535, 10.1109/TBME.2006.883802 Ince, 2009, A generic and robust system for automated patient-specific classification of ECG signals, IEEE Trans. Biomed. Eng., 56, 1415, 10.1109/TBME.2009.2013934 J. Wiens, J.V. Guttag, Active learning applied to patient-adaptive heartbeat classification, in: Advances in Neural Information Processing Systems, 2010, pp. 2442–2450. Llamedo, 2012, An automatic patient-adapted ECG heartbeat classifier allowing expert assistance, IEEE Trans. Biomed. Eng., 59, 2312, 10.1109/TBME.2012.2202662 Testing and Reporting Performance Results of Cardiac Rhythm and ST-Segment Measurement Algorithms, ANSI/AAMI Std. EC57:1998, Rev. 2008. ECGpedia, A Free Electrocardiography (ECG) Tutorial and Textbook. URL 〈http://en.ecgpedia.org/wiki/Main_Page〉. Christov, 2006, Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification, Med. Eng. Phys., 28, 876, 10.1016/j.medengphy.2005.12.010 Guyon, 2003, An introduction to variable and feature selection, J. Mach. Learn. Res., 3, 1157 H. Zhu, X. Hu, J. Dong, An improved QRS detection approach based on two-lead bi-referring, in: The IASTED 2012 African Conferences, 2012. Zhu, 2013, An R-peak detection method based on peaks of Shannon energy envelope, Biomed. Signal Process. Control, 8, 466, 10.1016/j.bspc.2013.01.001 Ghaffari, 2009, A robust wavelet-based multi-lead electrocardiogram delineation algorithm, Med. Eng. Phys., 31, 1219, 10.1016/j.medengphy.2009.07.017 Martínez, 2004, A wavelet-based ECG delineator, IEEE Trans. Biomed. Eng., 51, 570, 10.1109/TBME.2003.821031 Fan, 2008, LIBLINEAR, J. Mach. Learn. Res., 9, 1871 Y.-W. Chen, C.-J. Lin, Combining SVMS with various feature selection strategies, in: Feature Extraction, Springer, 2006, pp. 315–324. B. Sarojini, N. Ramaraj, S. Nickolas, Enhancing the performance of LIBSVM classifier by kernel f-score feature selection, in: Communications in Computer and Information Science, vol. 40, Noida, India, 2009, pp. 533–543. Wu, 2009, A small sphere and large margin approach for novelty detection using training data with outliers, IEEE Trans. Pattern Anal. Mach. Intell., 31, 2088, 10.1109/TPAMI.2009.24 Kittler, 1998, On combining classifiers, IEEE Trans. Pattern Anal. Mach. Intell., 20, 226, 10.1109/34.667881 Wu, 2004, Probability estimates for multi-class classification by pairwise coupling, J. Mach. Learn. Res., 5, 975 A.Y. Ng, Feature selection, L1 vs. L2 regularization, and rotational invariance, in: Proceedings of the 21st International Conference on Machine Learning, ACM, 2004, pp. 78–85. T. Evgeniou, M. Pontil, Regularized multi-task learning, in: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2004, pp. 109–117.