Mildly dissipative nonlinear Timoshenko systems—global existence and exponential stability

Journal of Mathematical Analysis and Applications - Tập 276 - Trang 248-278 - 2002
Jaime E. Muñoz Rivera1, Reinhard Racke2
1Department of Research and Development, National Laboratory for Scientific Computation, Rua Getulio Vargas 333, Quitandinha, CEP 25651-070 Petrópolis, RJ, and UFRJ, Rio de Janeiro, Brazil
2Department of Mathematics and Statistics, University of Konstanz, 78457, Konstanz, Germany

Tài liệu tham khảo

Ammar Khodja, 1999, Dynamic stabilization of systems via decoupling techniques, ESAIM: Control Optim. Calc. Var., 4, 577, 10.1051/cocv:1999123 Ammar Khodja, 2000, Energy decay for Timoshenko systems of memory type, Konstanzer Schr. Math. Inf., 131 Chen, 1998, Spectrum and stability for elastic systems with global or local Kelvin–Voigt damping, SIAM J. Appl. Math., 59, 651, 10.1137/S0036139996292015 Jiang, 2000, Evolution Equations in Thermoelasticity, 112 Liu, 1999, Semigroups Associated with Dissipative Systems, 398 Neves, 1986, On the spectrum of evolution operators generated by hyperbolic systems, J. Funct. Anal., 67, 320, 10.1016/0022-1236(86)90029-7 Racke, 1992, Lectures on Nonlinear Evolution Equations. Initial Value Problems, E19 Soufyane, 1999, Stabilisation de la poutre de Timoshenko, C. R. Acad. Sci. Paris Sér. I, 328, 731, 10.1016/S0764-4442(99)80244-4