The new challenges of machining Ceramic Matrix Composites (CMCs): Review of surface integrity

Oriol Gavalda Diaz1, Gonzalo Garcia Luna1, Zhirong Liao1, Dragos Axinte1,2
1Faculty of Engineering, University of Nottingham, UK
2Faculty of Science and Engineering, University of Nottingham, Ningbo, China

Tài liệu tham khảo

Kaw, 1997 Teti, 2002, Machining of composite materials, CIRP Ann. - Manuf. Technol., 51, 611, 10.1016/S0007-8506(07)61703-X Liu, 2012, A review of mechanical drilling for composite laminates, Compos. Struct., 94, 1265, 10.1016/j.compstruct.2011.11.024 Dandekar, 2012 Rayat, 2017, Fabrication and machining of ceramic composites — a review on current scenario, Mater. Manuf. Process., 32, 1451, 10.1080/10426914.2017.1279301 Di Carlo, 2014, Advances in SiC/SiC composites for aero-propulsion, 217 Krenkel, 2014, Ceramic matrix composites for friction applications, 647 Sauder, 2014, Ceramic matrix composites: nuclear applications, 609 Intelligence, 2009 Evans, 1994, The physics and mechanics of fibre-reinforced brittle matrix composites, J. Mater. Sci., 29, 3857, 10.1007/BF00355946 Heidenreich, 2014, C/SiC and C/C-SiC composites, 147 Spriet, 2014, CMC applications to gas turbines, 591 Hatta, 2014, Carbon/Carbons and their indsutrial applications, 87 Keller, 2014, Oxide-oxide composites, 236 Kagawa, 2014, Ultrahigh temperature ceramic-based composites, 273 Sylvia, 2015 Savino, 2018, Aero-thermo-chemical characterization of ultra-high-temperature ceramics for aerospace applications, J. Eur. Ceram. Soc., 38, 2937, 10.1016/j.jeurceramsoc.2017.12.043 Naslain, 2016, SiC-matrix composites: tough ceramics for thermostructural application in different fields, Eng. Ceram. Curr. Status Futur. Prospect., 84, 142, 10.1002/9781119100430.ch8 Marshall, 2001, “Ceramics for future power generation technology : fiber reinforced oxide composites, Curr. Opin. Solid State Mater. Sci., 5, 283, 10.1016/S1359-0286(01)00017-1 Jannotti, 2017, Measurement of microscale residual stresses in multi-phase ceramic composites using Raman spectroscopy, Acta Mater., 129, 482, 10.1016/j.actamat.2017.03.015 Wing, 2017, Microstress in the matrix of a melt-infiltrated SiC/SiC ceramic matrix composite, J. Am. Ceram. Soc., 38, 42 Ayrikyan, 2018, Investigation of residual stress in lead-free BNT-based ceramic/ceramic composites, Acta Mater., 148, 432, 10.1016/j.actamat.2018.02.014 Kahles, 1967, Paper 4: SURFACE INTEGRITY-A new requirement for surfaces generated BY MATERIAL-REMOVAL methods, 31 Thakur, 2016, State-of-the-art in surface integrity in machining of nickel-based super alloys, Int. J. Mach. Tool Manufact., 100, 25, 10.1016/j.ijmachtools.2015.10.001 Opila, 1999 Morscher, 2010, Stress-environmental effects on fiber-reinforced SiC-based composites Gavalda Diaz, 2017, Towards understanding the cutting and fracture mechanism in ceramic matrix composites, Int. J. Mach. Tool Manufact., 118–119, 12, 10.1016/j.ijmachtools.2017.03.008 Liu, 2018, “Influence of grinding fiber angles on grinding of the 2D C/C – SiC composites, Ceram. Int., 0 Ghosh, 2008, Scratch-induced microplasticity and microcracking in zirconium diboride-silicon carbide composite, Acta Mater., 56, 3011, 10.1016/j.actamat.2008.02.038 Ghosh, 2008, Measurement of scratch-induced residual stress within SiC grains in ZrB2-SiC composite using micro-Raman spectroscopy, Acta Mater., 56, 5345, 10.1016/j.actamat.2008.07.031 Wang, 2016, Improving hole exit quality in rotary ultrasonic machining of ceramic matrix composites using a compound step-taper drill, Ceram. Int., 42, 13387, 10.1016/j.ceramint.2016.05.095 Xing, 2017, Assessment in drilling of C/C-SiC composites using brazed diamond drills, J. Manuf. Process., 26, 31, 10.1016/j.jmapro.2017.01.006 Ding, 2014, Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machining, J. Mater. Process. Technol., 214, 2900, 10.1016/j.jmatprotec.2014.06.015 Feng, 2017, Drilling induced tearing defects in rotary ultrasonic machining of C/SiC composites, Ceram. Int., 43, 791, 10.1016/j.ceramint.2016.10.010 Hocheng, 2000, Assessment of ultrasonic drilling of C/SiC composite material, Mater. Sci., 31, 133 Li, 2005, Rotary ultrasonic machining of ceramic matrix composites: feasibility study and designed experiments, Int. J. Mach. Tool Manufact., 45, 1402, 10.1016/j.ijmachtools.2005.01.034 Wang, 2017, Effects of tool vibration on fiber fracture in rotary ultrasonic machining of C/SiC ceramic matrix composites, Compos. B Eng., 129, 233, 10.1016/j.compositesb.2017.07.081 Gavalda Diaz, 2018, On understanding the microstructure of SiC/SiC Ceramic Matrix Composites (CMCs) after a material removal process, Mater. Sci. Eng., 713 Diaz, 2018, “Probabilistic modelling of tool unbalance during cutting of hard- heterogeneous materials : a case study in Ceramic Matrix Composites ( CMCs ), Composer Part B, 148, 217, 10.1016/j.compositesb.2018.04.029 Zhang, 2016, Development of a cutting force prediction model based on brittle fracture for C/SiC in rotary ultrasonic facing milling, Int. J. Adv. Manuf. Technol., 85, 573 Yuan, 2016, A cutting force prediction dynamic model for side milling of ceramic matrix composites C/SiC based on rotary ultrasonic machining, Int. J. Adv. Manuf. Technol., 37, 10.1007/s00170-015-8099-6 Li, 2016, Research on the rotary ultrasonic facing milling of ceramic matrix composites, Procedia CIRP, 56, 428, 10.1016/j.procir.2016.10.077 Yuan, 2017, Research into the transition of material removal mechanism for C/SiC in rotary ultrasonic face machining, Int. J. Adv. Manuf. Technol., 95, 1751 Gao, 2012, Research on tool wear and surface characteristics in ultrasonic milling carbon fibre reinforced carbon composite, Adv. Mater. Res., 497, 299, 10.4028/www.scientific.net/AMR.497.299 Bertsche, 2013, Ultrasonic slot machining of a silicon carbide matrix composite, Int. J. Adv. Manuf. Technol., 66, 1119, 10.1007/s00170-012-4394-7 Dong, 2017, Improved machinability of SiC/SiC ceramic matrix composite via laser-assisted micromachining, Int. J. Adv. Manuf. Technol., 90, 731, 10.1007/s00170-016-9415-5 Rozzi, 2016, The laser-assisted edge milling of ceramic matrix composites, 1 Zhang, 2016, Effect of fiber orientations on surface grinding process of unidirectional C/SiC composites, Appl. Surf. Sci., 366, 424, 10.1016/j.apsusc.2016.01.142 Liu, 2017, A study on the surface grinding of 2D C/SiC composites, Int. J. Adv. Manuf. Technol., 1 Du, 2018, New observations of the fiber orientations effect on machinability in grinding of C/SiC ceramic matrix composite, Ceram. Int., 44, 13916, 10.1016/j.ceramint.2018.04.240 Otani, 1986, Progress of pitch-based carbon fiber in Japan, Am. Chem. Soc., 1155 Frank, 2014, Carbon fibers: precursor systems, processing, structure, and properties, Angew. Chem. Int. Ed., 53, 5262, 10.1002/anie.201306129 Cao, 2014, Influence of diamond wheel grinding process on surface micro-topography and properties of SiO2/SiO2 composite, Appl. Surf. Sci., 292, 181, 10.1016/j.apsusc.2013.11.109 Cao, 2013, A study on grinding surface waviness of woven ceramic matrix composites, Appl. Surf. Sci., 270, 503, 10.1016/j.apsusc.2013.01.069 Cao, 2015, Investigations on grinding process of woven ceramic matrix composite based on reinforced fiber orientations, Compos. B Eng., 71, 184, 10.1016/j.compositesb.2014.11.029 Tawakoli, 2011, Intermittent grinding of ceramic matrix composites (CMCs) utilizing a developed segmented wheel, Int. J. Mach. Tool Manufact., 51, 112, 10.1016/j.ijmachtools.2010.11.002 Azarhoushang, 2014, Wear of non-segmented and segmented diamond wheels in high-speed deep grinding of carbon fibre-reinforced ceramics, Int. J. Adv. Manuf. Technol., 74, 1293, 10.1007/s00170-014-6082-2 Azarhoushang, 2011, Development of a novel ultrasonic unit for grinding of ceramic matrix composites, Int. J. Adv. Manuf. Technol., 57, 945, 10.1007/s00170-011-3347-x Ding, 2017, Study on surface/subsurface breakage in ultrasonic assisted grinding of C/SiC composites, Int. J. Adv. Manuf. Technol., 3095, 10.1007/s00170-017-0012-z Ding, 2014, Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machining, J. Mater. Process. Technol., 214, 2900, 10.1016/j.jmatprotec.2014.06.015 Li, 2016, Effect of different parameters on machining of SiC/SiC composites via pico-second laser, Appl. Surf. Sci., 364, 378, 10.1016/j.apsusc.2015.12.089 Tuersley, 1998, “The processing of SiC – SiC ceramic matrix composites using a pulsed Nd-YAG laser Part II the effect of process variables, J. Mater. Sci., 3, 963, 10.1023/A:1004307710899 Costil, 2008, Surface modification of ceramic matrix composites induced by laser treatment, Appl. Surf. Sci., 255, 2425, 10.1016/j.apsusc.2008.07.109 Liu, 2014, Effect of energy density and feeding speed on micro-hole drilling in C/SiC composites by picosecond laser, J. Mater. Process. Technol., 214, 3131, 10.1016/j.jmatprotec.2014.07.016 Zhang, 2015, Machining parameter optimization of C/SiC composites using high power picosecond laser, Appl. Surf. Sci., 330, 321, 10.1016/j.apsusc.2015.01.010 Wang, 2013, Ultra-short pulse laser deep drilling of C/SiC composites in air, Appl. Phys. Mater. Sci. Process, 111, 1213, 10.1007/s00339-012-7377-5 Zhai, 2017, Influence of surface morphology on processing of C/SiC composites via femtosecond laser, Composer Part A Appl. Sci. Manuf., 102, 117, 10.1016/j.compositesa.2017.07.031 Liu, 2017, Effect of machining parameter on femtosecond laser drilling processing on SiC/SiC composites, Int. J. Adv. Manuf. Technol., 1 Zhai, 2018, Effect of the surface microstructure ablated by femtosecond laser on the bonding strength of EBCs for SiC/SiC composites, Optic Commun., 424, 137, 10.1016/j.optcom.2018.04.055 Rudolph, 2003, Physical chemistry of the femtosecond and nanosecond laser-material interaction with SiC and a SiC-TiC-TiB2composite ceramic compound, Appl. Surf. Sci., 208–209, 285, 10.1016/S0169-4332(02)01356-9 Srinivasu, 2014, Mask-less pocket milling of composites by abrasive waterjets: an experimental investigation, J. Manuf. Sci. Eng., 136, 10.1115/1.4027181 Shanmugam, 2009, An investigation on kerf characteristics in abrasive waterjet cutting of layered composites, J. Mater. Process. Technol., 209, 3887, 10.1016/j.jmatprotec.2008.09.001 Srinivasu, 2009, Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics, Int. J. Mach. Tool Manufact., 49, 1077, 10.1016/j.ijmachtools.2009.07.007 Hamatani, 1990, Machinability of high temperature composites by abrasive waterjet, Trans. ASME, 112, 381 Ramulu, 2001, Abrasive water jet machining mechanisms in continuous-fiber ceramic composites, J. Compos. Technol. Res., 23, 82 Hashish, 2015, Status of AWJ machining of CMCS and hard materials Farooqui, 2018, A perspective on shaping of advanced ceramics by electro discharge machining, Procedia Manuf., 20, 65, 10.1016/j.promfg.2018.02.009 Pachaury, 2017, An overview of electric discharge machining of ceramics and ceramic based composites, J. Manuf. Process., 25, 369, 10.1016/j.jmapro.2016.12.010 George, 2004, EDM machining of carbon-carbon composite - a Taguchi approach, J. Mater. Process. Technol., 145, 66, 10.1016/S0924-0136(03)00863-X Guu, 2001, Effect of electrical discharge machining on the characteristics of carbon fiber reinforced carbon composites, J. Mater. Sci., 36, 2037, 10.1023/A:1017539100832 Hocheng, 1998, The feasibility analysis of electrical-discharge machining of carbon-carbon composites, Mater. Manuf. Process., 13, 117, 10.1080/10426919808935223 Wei, 2013, Electrical discharge machining of ceramic matrix composites with ceramic fiber reinforcements, Int. J. Adv. Manuf. Technol., 64, 187, 10.1007/s00170-012-3995-5