Identification of a novel effector gene and its functional tradeoff in Fusarium oxysporum f. sp. cepae that infects Welsh onion
Tài liệu tham khảo
Inden, 1990, Japanese bunching onion (Allium fistulosum L.). Onions and allied Crops, Biochem. Food Sci. Minor Crops, Volume III, 159
Yakuwa, 1994
Dissanayake, 2009, Pathogenic variation and molecular characterization of Fusarium species isolated from wilted Welsh onion in Japan, J. Gen. Plant Pathol., 75, 37, 10.1007/s10327-008-0135-z
Dean, 2012, The Top 10 fungal pathogens in molecular plant pathology, Mol. Plant Pathol., 13, 414, 10.1111/j.1364-3703.2011.00783.x
Leslie, 2006, Fusarium laboratory workshops--A recent history, Mycotoxin Res., 22, 73, 10.1007/BF02956766
Laurence, 2012, High levels of diversity in Fusarium oxysporum from non-cultivated ecosystems in Australia, Fun. Biol., 116, 289, 10.1016/j.funbio.2011.11.011
Michielse, 2009, Pathogen profile update: Fusarium oxysporum, Mol. Plant Pathol., 10, 311, 10.1111/j.1364-3703.2009.00538.x
Chand, 2016, Regulation of miR394 in Response to Fusarium oxysporum f. sp. cepae (FOC) Infection in Garlic (Allium sativum L), Front. Plant Sci., 7, 258, 10.3389/fpls.2016.00258
2008, 11
Sasaki, 2015, Genetic and pathogenic variability of Fusarium oxysporum f. sp. cepae isolated from onion and Welsh onion in Japan, Phytopathology, 105, 525, 10.1094/PHYTO-06-14-0164-R
Schmidt, 2013, MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum, BMC Genom., 14, 1, 10.1186/1471-2164-14-119
Gawehns, 2014, The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death, Mol. Plant Microbe Interact., 27, 336, 10.1094/MPMI-11-13-0330-R
Houterman, 2009, The effector protein Avr2 of the xylem‐colonizing fungus Fusarium oxysporum activates the tomato resistance protein I‐2 intracellularly, Plant J., 58, 970, 10.1111/j.1365-313X.2009.03838.x
Ma, 2015, The AVR 2–SIX 5 gene pair is required to activate I‐2‐mediated immunity in tomato, New Phytol., 208, 507, 10.1111/nph.13455
Rep, 2004, A small, cysteine‐rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I‐3‐mediated resistance in tomato, Mol. Microbiol., 53, 1373, 10.1111/j.1365-2958.2004.04177.x
Armitage, 2018, Characterisation of pathogen-specific regions and novel effector candidates in Fusarium oxysporum f. sp. cepae, Sci. Rep., 8, 1, 10.1038/s41598-018-30335-7
Li, 2020, Related mobile pathogenicity chromosomes in Fusarium oxysporum determine host range on cucurbits, Mol. Plant Pathol., 21, 761, 10.1111/mpp.12927
Taylor, 2016, Identification of pathogenicity‐related genes in Fusarium oxysporum f. sp. cepae, Mol. Plant Pathol., 17, 1032, 10.1111/mpp.12346
van Dam, 2017, A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species, Sci. Rep., 7, 1, 10.1038/s41598-017-07995-y
Ma, 2010, Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium, Nature, 464, 367, 10.1038/nature08850
Hatta, 2002, A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata, Genetics, 161, 59, 10.1093/genetics/161.1.59
Plaumann, 2018, A dispensable chromosome is required for virulence in the hemibiotrophic plant pathogen Colletotrichum higginsianum, Front. Microbiol., 9, 1005, 10.3389/fmicb.2018.01005
Akamatsu, 1999, Molecular karyotypes for Alternaria plant pathogens known to produce host-specific toxins, Curr. Genet., 35, 647, 10.1007/s002940050464
Antiabong, 2016, Semi-quantitative digital analysis of polymerase chain reaction-electrophoresis gel: potential applications in low-income veterinary laboratories, Vet. World, 9, 935, 10.14202/vetworld.2016.935-939
Kuwayama, 2002, PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors, Nucleic Acids Res., 30, 10.1093/nar/30.2.e2
Namiki, 2001, Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis, Molec. Plant-microb. Interact., 14, 580, 10.1094/MPMI.2001.14.4.580
Kawabe, 2004, Cloning of the pathogenicity-related gene FPD1 in Fusarium oxysporum f. sp. lycopersici, J. Gen. Plant Pathol., 70, 16, 10.1007/s10327-003-0089-0
Zhang, 2017, Molecular, biological and physiological characterizations of resistance to phenamacril in Fusarium graminearum, Plant Pathol., 66, 1404, 10.1111/ppa.12700
Ayukawa, 2021, A pair of effectors encoded on a conditionally dispensable chromosome of Fusarium oxysporum suppress host-specific immunity, Commun. Biol., 4, 1, 10.1038/s42003-021-02245-4
Bustamam, 1987, Effect of pentachloronitrobenzene, pentachloroaniline, and albinism on epidermal penetration by appressoria of Pyricularia, Pestic. Biochem. Physiol., 28, 29, 10.1016/0048-3575(87)90110-6
Ludwig, 2014, Melanin is not required for turgor generation but enhances cell-wall rigidity in appressoria of the corn pathogen Colletotrichum graminicola, Mol. Plant Microbe Interact., 27, 315, 10.1094/MPMI-09-13-0267-R
Wolkow, 1983, Effect of inhibitors of melanin biosynthesis on structure and function of appressoria of Colletotrichum lindemuthianum, Physiol. Plant Pathol., 23, 55, 10.1016/0048-4059(83)90034-6
Chen, 2012, Roles for SKN7 response regulator in stress resistance, conidiation and virulence in the citrus pathogen Alternaria alternata, Fungal Genet. Biol., 49, 802, 10.1016/j.fgb.2012.07.006
Fu, 2020, The basal transcription factor II H subunit Tfb5 is required for stress response and pathogenicity in the tangerine pathotype of Alternaria alternata, Mol. Plant Pathol., 21, 1337, 10.1111/mpp.12982
Reverchon, 2002, Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity, J. Bacteriol., 184, 654, 10.1128/JB.184.3.654-665.2002
Yang, 2013, Involvement of BcVeA and BcVelB in regulating conidiation, pigmentation and virulence in Botrytis cinerea, Fungal Genet. Biol., 50, 63, 10.1016/j.fgb.2012.10.003
Jain, 2005, Signaling via the G protein α subunit FGA2 is necessary for pathogenesis in Fusarium oxysporum, FEMS Microbiol. Lett., 243, 165, 10.1016/j.femsle.2004.12.009
Peyraud, 2016, A resource allocation trade-off between virulence and proliferation drives metabolic versatility in the plant pathogen Ralstonia solanacearum, PLoS Pathog., 12, 10.1371/journal.ppat.1005939
Bleackley, 2020, Extracellular vesicles from the cotton pathogen Fusarium oxysporum f. sp. vasinfectum induce a phytotoxic response in plants, Front. Plant Sci., 10, 1610, 10.3389/fpls.2019.01610
Bayraktar, 2011, Molecular identification and genetic diversity of Fusarium species associated with onion fields in Turkey, J. Phytopathol., 159, 28, 10.1111/j.1439-0434.2010.01715.x
Bayraktar, 2010, Characterization of Fusarium oxysporum f. sp. cepae from onion in Turkey based on vegetative compatibility and rDNA RFLP analysis, J. Phytopathol., 158, 691, 10.1111/j.1439-0434.2010.01685.x
Bektas, 2019, Phylogenetic and morphological characterization of Fusarium oxysporum f. sp. cepae the causal agent of basal rot on onion isolated from Turkey, Fresenius Environ. Bull., 28, 1733
Dissanayake, 2009, Genetic diversity and pathogenicity of Fusarium oxysporum isolated from wilted Welsh onion in Japan, J. Gen. Plant Pathol., 75, 125, 10.1007/s10327-009-0152-6
Nasr Esfahani, 2018, Genetic and virulence variation in Fusarium oxysporum f. sp. cepae causing root and basal rot of common onion in Iran, J. Phytopathol., 166, 572, 10.1111/jph.12720
Southwood, 2012, Molecular identification of two vegetative compatibility groups of Fusarium oxysporum f. sp. cepae, Phytopathology, 102, 204, 10.1094/PHYTO-04-11-0107
Southwood, 2012, Phylogenetic and biological characterization of Fusarium oxysporum isolates associated with onion in South Africa, Plant Dis., 96, 1250, 10.1094/PDIS-10-11-0820-RE
Haapalainen, 2022, Pathogenicity and toxin production of different Fusarium oxysporum isolates infecting onion (Allium cepa L.), Ann. Appl. Biol., 180, 348, 10.1111/aab.12737