On semicomplete finite p-groups

Ricerche di Matematica - Tập 72 - Trang 417-422 - 2022
Rasoul Soleimani1
1Department of Mathematics, Payame Noor University, Tehran, Iran

Tóm tắt

Let G be a finite group and N be a non-trivial proper normal subgroup of G. The pair (G, N) is called a Camina pair if $$xN\subseteq x^G$$ for all $$x\in G\setminus N$$ , where $$x^G$$ denotes the conjugacy class of x in G. Also let $$\mathrm {Aut}^{G'}(G)$$ denote the group of all automorphisms of G fixing $$G/G'$$ elementwise. A group G is called semicomplete if $$\mathrm {Aut}^{G'}(G)=\mathrm {Inn}(G)$$ . In this paper, using the notion of Frattinian groups, we give a necessary and sufficient condition for a finite p-group G such that (G, Z(G)) is a Camina pair to be semicomplete.

Tài liệu tham khảo

Abdollahi, A., Ghoraishi, S.M.: On noninner \(2\)-automorphisms of finite \(2\)-groups. Bull. Aust. Math. Soc. 90(2), 227–231 (2014) Bachmuth, S.: Automorphisms of free metabelian groups. Trans. Am. Math. Soc. 118, 93–104 (1965) Cheng, Y.: On finite \(p\)-groups with cyclic commutator subgroup. Arch. Math. 39, 295–298 (1982) Curran, M.J.: Finite groups with central automorphism group of minimal order. Math. Proc. R. Irish Acad. 104A(2), 223–229 (2004) Dark, R., Scoppola, C.M.: On Camina groups of prime power order. J. Algebra 181, 787–802 (1996) Deaconescu, M., Silberberg, G.: Noninner automorphisms of order \(p\) of finite \(p\)-groups. J. Algebra 250, 283–287 (2002) Huppert, B.: Endliche Gruppen I. Springe, New York (1967) Jamali, A.R., Viseh, M.: On the existence of noninner automorphisms of order two in finite \(2\)-groups. Bull. Aust. Math. Soc. 87(2), 278–287 (2013) Liebeck, H.: The automorphism group of finite \(p\)-groups. J. Algebra 4, 426–432 (1966) Macdonald, I.D.: Some \(p\)-groups of Frobenius and extra-special type. Isr. J. Math. 40, 350–364 (1981) Nielsen, J.: Die Isomorphismengruppe der freien Gruppen. Math. Ann. 91, 169–209 (1924) Schmid, P.: Frattinian \(p\)-groups. Geom. Dedic. 36, 359–364 (1990) Shabani-Attar, M.: Semicomplete finite \(p\)-groups. Algebra Colloq. 18(Spec 1), 937–944 (2011) Shabani-Attar, M.: Semicomplete finite \(p\)-groups of class \(2\). Algebra Colloq. 23(4), 651–656 (2016) Singh, S., Gumber, D., Kalra, H.: IA-automorphisms of finitely generated nilpotent groups. J. Algebra Appl. 13, 1450027 (2014) Soleimani, R.: On some \(p\)-subgroups of automorphism group of a finite \(p\)-group. Viet. J. Math. 36(1), 63–69 (2008) Yadav, M.K.: On automorphisms of finite \(p\)-groups. J. Group Theory 10, 859–866 (2007)