Development of a Reinforcement Learning-based Evolutionary Fuzzy Rule-Based System for diabetes diagnosis
Tóm tắt
Từ khóa
Tài liệu tham khảo
t.E.B. IDF Diabetes Atlas, Belgium: International Diabetes Federation, and (http://www.diabetesatlas.org/).
Zhu, 2015, An improved early detection method of type-2 diabetes mellitus using multiple classifier system, Inf. Sci., 292, 1, 10.1016/j.ins.2014.08.056
Hunter, 2005, Gene–environment interactions in human diseases, Nat. Rev. Genet., 6, 287, 10.1038/nrg1578
Fernández-Llatas, 2015
Canlas, 2009
Porter, 2009, Identifying diabetic patients: a data mining approach, 500
Panzarasa, 2009, Data mining techniques for analyzing stroke care processes, Stud. health Technol. Inf., 160, 939
Das, 2009, Effective diagnosis of heart disease through neural networks ensembles, Expert Syst. Appl., 36, 7675, 10.1016/j.eswa.2008.09.013
Naik, 2014, Tumor detection and classification using decision tree in brain MRI, Int. J. Comput. Sci. Netw. Secur. (IJCSNS), 14, 87
Mehmanpazir, 2017, Development of an evolutionary fuzzy expert system for estimating future behavior of stock price, J. Industrial Eng. Int., 13, 29, 10.1007/s40092-016-0165-7
Soltani, 2013, A study on siro, solo, compact, and conventional ring-spun yarns. Part III: modeling fiber migration using modular adaptive neuro-fuzzy inference system, J. Text. Inst., 104, 755
Zadeh, 1969, Biological application of the theory of Fuzzy sets and systems, 199
Ganji, 2010, Using fuzzy ant colony optimization for diagnosis of diabetes disease, 501
Karahoca, 2009, Diagnosis of diabetes by using adaptive neuro fuzzy inference systems, 1
Beloufa, 2013, Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm, Comput. methods programs Biomed., 112, 92, 10.1016/j.cmpb.2013.07.009
Gadaras, 2009, An interpretable fuzzy rule-based classification methodology for medical diagnosis, Artif. Intell. Med., 47, 25, 10.1016/j.artmed.2009.05.003
Chang, 2004, Evolutionary design of a fuzzy classifier from data, IEEE transactions on systems, man, and cybernetics, Part B Cybern., 34, 1894, 10.1109/TSMCB.2004.831160
Shanker, 1996, Using neural networks to predict the onset of diabetes mellitus, J. Chem. Inf. Comput. Sci., 36, 35, 10.1021/ci950063e
Park, 2001, A sequential neural network model for diabetes prediction, Artif. Intell. Med., 23, 277, 10.1016/S0933-3657(01)00086-0
Gonçalves, 2006, Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases, IEEE Trans. Syst.Man Cybern. C Appl. Rev., 36, 236, 10.1109/TSMCC.2004.843220
Polat, 2007, An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease, Digit. Signal Process., 17, 702, 10.1016/j.dsp.2006.09.005
Luukka, 2007, Similarity classifier using similarity measure derived from Yu's norms in classification of medical data sets, Comput. Biol. Med., 37, 1133, 10.1016/j.compbiomed.2006.10.005
Polat, 2008, A cascade learning system for classification of diabetes disease: generalized discriminant analysis and least square support vector machine, Expert Syst. Appl., 34, 482, 10.1016/j.eswa.2006.09.012
Kahramanli, 2008, Design of a hybrid system for the diabetes and heart diseases, Expert Syst. Appl., 35, 82, 10.1016/j.eswa.2007.06.004
Ghazavi, 2008, Medical data mining by fuzzy modeling with selected features, Artif. Intell. Med., 43, 195, 10.1016/j.artmed.2008.04.004
Temurtas, 2009, A comparative study on diabetes disease diagnosis using neural networks, Expert Syst. Appl., 36, 8610, 10.1016/j.eswa.2008.10.032
Übeyli, 2010, Automatic diagnosis of diabetes using adaptive neuro-fuzzy inference systems, Expert Syst., 27, 259, 10.1111/j.1468-0394.2010.00527.x
Ganji, 2010, Using fuzzy ant colony optimization for diagnosis of diabetes disease, 501
Luukka, 2011, Feature selection using fuzzy entropy measures with similarity classifier, Expert Syst. Appl., 38, 4600, 10.1016/j.eswa.2010.09.133
Isa, 2011, Clustered-hybrid multilayer perceptron network for pattern recognition application, Appl. Soft Comput., 11, 1457, 10.1016/j.asoc.2010.04.017
Özbakır, 2011, Exploring comprehensible classification rules from trained neural networks integrated with a time-varying binary particle swarm optimizer, Eng. Appl. Artif. Intell., 24, 491, 10.1016/j.engappai.2010.11.008
Rodríguez, 2011, Efficient distributed genetic algorithm for rule extraction, Appl. soft Comput., 11, 733, 10.1016/j.asoc.2009.12.035
Örkcü, 2011, Comparing performances of backpropagation and genetic algorithms in the data classification, Expert Syst. Appl., 38, 3703, 10.1016/j.eswa.2010.09.028
Beloufa, 2013, Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm, Comput. methods programs Biomed., 112, 92, 10.1016/j.cmpb.2013.07.009
Liu, 2013, Extraction of fuzzy rules from fuzzy decision trees: an axiomatic fuzzy sets (AFS) approach, Data & Knowl. Eng., 84, 1, 10.1016/j.datak.2012.12.001
Yilmaz, 2014, A new data preparation method based on clustering algorithms for diagnosis systems of heart and diabetes diseases, J. Med. Syst., 38, 1
Gürbüz, 2014, A new adaptive support vector machine for diagnosis of diseases, Expert Syst., 31, 389, 10.1111/exsy.12051
Van Belle, 2014, White box radial basis function classifiers with component selection for clinical prediction models, Artif. Intell. Med., 60, 53, 10.1016/j.artmed.2013.10.001
Feng, 2015, Variable coded hierarchical fuzzy classification model using DNA coding and evolutionary programming, Appl. Math. Model., 39, 7401, 10.1016/j.apm.2015.03.004
Christopher, 2015, A Swarm Optimization approach for clinical knowledge mining, Comput. methods programs Biomed., 121, 137, 10.1016/j.cmpb.2015.05.007
Erkaymaz, 2017, Performance of small-world feedforward neural networks for the diagnosis of diabetes, Appl. Math. Comput., 311, 22
Ramezani, 2017, A novel hybrid intelligent system with missing value imputation for diabetes diagnosis, Alexandria Eng. J.
Tahan, 2017, MEMOD: a novel multivariate evolutionary multi-objective discretization, Soft Comput., 1
Negnevitsky, 2005
Ishibuchi, 2006
Asadi, 2016, ACORI: a novel ACO algorithm for rule induction, Knowledge-Based Syst., 97, 175, 10.1016/j.knosys.2016.01.005
Asadi, 2016, RipMC: RIPPER for multiclass classification, Neurocomputing, 191, 19, 10.1016/j.neucom.2016.01.010
Ishibuchi, 1997, Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems, Fuzzy sets Syst., 89, 135, 10.1016/S0165-0114(96)00098-X
Babuska, 2002, Fuzzy self-tuning PI control of pH in fermentation, Eng. Appl. Artif. Intell., 15, 3, 10.1016/S0952-1976(02)00003-9
Karr, 1991, Genetic algorithms for fuzzy controllers, Ai Expert, 6, 26
Alcalá, 2007, A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection, IEEE Trans. Fuzzy Syst., 15, 616, 10.1109/TFUZZ.2006.889880
Casillas, 2005, Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction, IEEE Trans. Fuzzy Syst., 13, 13, 10.1109/TFUZZ.2004.839670
Gürocak, 1999, A genetic-algorithm-based method for tuning fuzzy logic controllers, Fuzzy sets Syst., 108, 39, 10.1016/S0165-0114(97)00309-6
Herrera, 1995, Tuning fuzzy logic controllers by genetic algorithms, Int. J. Approx. Reason., 12, 299, 10.1016/0888-613X(94)00033-Y
Eineborg, 2001, Classifying uncovered examples by rule stretching, 41
Domeniconi, 2001, Incremental support vector machine construction, 589
Kayaer, 2003, Medical diagnosis on Pima Indian diabetes using general regression neural networks, 181
Luukka, 2006, Similarity classifier with generalized mean applied to medical data, Comput. Biol. Med., 36, 1026, 10.1016/j.compbiomed.2005.05.008
Elgawi, 2007, Online incremental random forests, 102
Park, 2008, Novel incremental principal component analysis with improved performance, 592
Bashir, 2014, An efficient rule-based classification of diabetes using ID3, C4. 5, & CART ensembles, frontiers of information technology (FIT), 226
Bashir, 2016, HMV: a medical decision support framework using multi-layer classifiers for disease prediction, J. Comput. Sci., 13, 10, 10.1016/j.jocs.2016.01.001