Development of a Reinforcement Learning-based Evolutionary Fuzzy Rule-Based System for diabetes diagnosis

Computers in Biology and Medicine - Tập 91 - Trang 337-352 - 2017
Fatemeh Mansourypoor1, Shahrokh Asadi1
1Faculty of Engineering, Farabi Campus, University of Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

t.E.B. IDF Diabetes Atlas, Belgium: International Diabetes Federation, and (http://www.diabetesatlas.org/).

Zhu, 2015, An improved early detection method of type-2 diabetes mellitus using multiple classifier system, Inf. Sci., 292, 1, 10.1016/j.ins.2014.08.056

Hunter, 2005, Gene–environment interactions in human diseases, Nat. Rev. Genet., 6, 287, 10.1038/nrg1578

Fernández-Llatas, 2015

Canlas, 2009

Porter, 2009, Identifying diabetic patients: a data mining approach, 500

Panzarasa, 2009, Data mining techniques for analyzing stroke care processes, Stud. health Technol. Inf., 160, 939

Das, 2009, Effective diagnosis of heart disease through neural networks ensembles, Expert Syst. Appl., 36, 7675, 10.1016/j.eswa.2008.09.013

Naik, 2014, Tumor detection and classification using decision tree in brain MRI, Int. J. Comput. Sci. Netw. Secur. (IJCSNS), 14, 87

Mehmanpazir, 2017, Development of an evolutionary fuzzy expert system for estimating future behavior of stock price, J. Industrial Eng. Int., 13, 29, 10.1007/s40092-016-0165-7

Soltani, 2013, A study on siro, solo, compact, and conventional ring-spun yarns. Part III: modeling fiber migration using modular adaptive neuro-fuzzy inference system, J. Text. Inst., 104, 755

Zadeh, 1965, Fuzzy sets, Inf. control, 8, 338, 10.1016/S0019-9958(65)90241-X

Zadeh, 1969, Biological application of the theory of Fuzzy sets and systems, 199

Ganji, 2010, Using fuzzy ant colony optimization for diagnosis of diabetes disease, 501

Karahoca, 2009, Diagnosis of diabetes by using adaptive neuro fuzzy inference systems, 1

Beloufa, 2013, Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm, Comput. methods programs Biomed., 112, 92, 10.1016/j.cmpb.2013.07.009

Gadaras, 2009, An interpretable fuzzy rule-based classification methodology for medical diagnosis, Artif. Intell. Med., 47, 25, 10.1016/j.artmed.2009.05.003

Chang, 2004, Evolutionary design of a fuzzy classifier from data, IEEE transactions on systems, man, and cybernetics, Part B Cybern., 34, 1894, 10.1109/TSMCB.2004.831160

Shanker, 1996, Using neural networks to predict the onset of diabetes mellitus, J. Chem. Inf. Comput. Sci., 36, 35, 10.1021/ci950063e

Park, 2001, A sequential neural network model for diabetes prediction, Artif. Intell. Med., 23, 277, 10.1016/S0933-3657(01)00086-0

Gonçalves, 2006, Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases, IEEE Trans. Syst.Man Cybern. C Appl. Rev., 36, 236, 10.1109/TSMCC.2004.843220

Polat, 2007, An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease, Digit. Signal Process., 17, 702, 10.1016/j.dsp.2006.09.005

Luukka, 2007, Similarity classifier using similarity measure derived from Yu's norms in classification of medical data sets, Comput. Biol. Med., 37, 1133, 10.1016/j.compbiomed.2006.10.005

Polat, 2008, A cascade learning system for classification of diabetes disease: generalized discriminant analysis and least square support vector machine, Expert Syst. Appl., 34, 482, 10.1016/j.eswa.2006.09.012

Kahramanli, 2008, Design of a hybrid system for the diabetes and heart diseases, Expert Syst. Appl., 35, 82, 10.1016/j.eswa.2007.06.004

Ghazavi, 2008, Medical data mining by fuzzy modeling with selected features, Artif. Intell. Med., 43, 195, 10.1016/j.artmed.2008.04.004

Temurtas, 2009, A comparative study on diabetes disease diagnosis using neural networks, Expert Syst. Appl., 36, 8610, 10.1016/j.eswa.2008.10.032

Übeyli, 2010, Automatic diagnosis of diabetes using adaptive neuro-fuzzy inference systems, Expert Syst., 27, 259, 10.1111/j.1468-0394.2010.00527.x

Ganji, 2010, Using fuzzy ant colony optimization for diagnosis of diabetes disease, 501

Luukka, 2011, Feature selection using fuzzy entropy measures with similarity classifier, Expert Syst. Appl., 38, 4600, 10.1016/j.eswa.2010.09.133

Isa, 2011, Clustered-hybrid multilayer perceptron network for pattern recognition application, Appl. Soft Comput., 11, 1457, 10.1016/j.asoc.2010.04.017

Özbakır, 2011, Exploring comprehensible classification rules from trained neural networks integrated with a time-varying binary particle swarm optimizer, Eng. Appl. Artif. Intell., 24, 491, 10.1016/j.engappai.2010.11.008

Rodríguez, 2011, Efficient distributed genetic algorithm for rule extraction, Appl. soft Comput., 11, 733, 10.1016/j.asoc.2009.12.035

Örkcü, 2011, Comparing performances of backpropagation and genetic algorithms in the data classification, Expert Syst. Appl., 38, 3703, 10.1016/j.eswa.2010.09.028

Beloufa, 2013, Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm, Comput. methods programs Biomed., 112, 92, 10.1016/j.cmpb.2013.07.009

Liu, 2013, Extraction of fuzzy rules from fuzzy decision trees: an axiomatic fuzzy sets (AFS) approach, Data & Knowl. Eng., 84, 1, 10.1016/j.datak.2012.12.001

Yilmaz, 2014, A new data preparation method based on clustering algorithms for diagnosis systems of heart and diabetes diseases, J. Med. Syst., 38, 1

Gürbüz, 2014, A new adaptive support vector machine for diagnosis of diseases, Expert Syst., 31, 389, 10.1111/exsy.12051

Van Belle, 2014, White box radial basis function classifiers with component selection for clinical prediction models, Artif. Intell. Med., 60, 53, 10.1016/j.artmed.2013.10.001

Feng, 2015, Variable coded hierarchical fuzzy classification model using DNA coding and evolutionary programming, Appl. Math. Model., 39, 7401, 10.1016/j.apm.2015.03.004

Christopher, 2015, A Swarm Optimization approach for clinical knowledge mining, Comput. methods programs Biomed., 121, 137, 10.1016/j.cmpb.2015.05.007

Erkaymaz, 2017, Performance of small-world feedforward neural networks for the diagnosis of diabetes, Appl. Math. Comput., 311, 22

Ramezani, 2017, A novel hybrid intelligent system with missing value imputation for diabetes diagnosis, Alexandria Eng. J.

Tahan, 2017, MEMOD: a novel multivariate evolutionary multi-objective discretization, Soft Comput., 1

Negnevitsky, 2005

Ishibuchi, 2006

Asadi, 2016, ACORI: a novel ACO algorithm for rule induction, Knowledge-Based Syst., 97, 175, 10.1016/j.knosys.2016.01.005

Asadi, 2016, RipMC: RIPPER for multiclass classification, Neurocomputing, 191, 19, 10.1016/j.neucom.2016.01.010

Ishibuchi, 1997, Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems, Fuzzy sets Syst., 89, 135, 10.1016/S0165-0114(96)00098-X

Babuska, 2002, Fuzzy self-tuning PI control of pH in fermentation, Eng. Appl. Artif. Intell., 15, 3, 10.1016/S0952-1976(02)00003-9

Karr, 1991, Genetic algorithms for fuzzy controllers, Ai Expert, 6, 26

Alcalá, 2007, A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection, IEEE Trans. Fuzzy Syst., 15, 616, 10.1109/TFUZZ.2006.889880

Casillas, 2005, Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction, IEEE Trans. Fuzzy Syst., 13, 13, 10.1109/TFUZZ.2004.839670

Gürocak, 1999, A genetic-algorithm-based method for tuning fuzzy logic controllers, Fuzzy sets Syst., 108, 39, 10.1016/S0165-0114(97)00309-6

Herrera, 1995, Tuning fuzzy logic controllers by genetic algorithms, Int. J. Approx. Reason., 12, 299, 10.1016/0888-613X(94)00033-Y

Eineborg, 2001, Classifying uncovered examples by rule stretching, 41

Domeniconi, 2001, Incremental support vector machine construction, 589

Kayaer, 2003, Medical diagnosis on Pima Indian diabetes using general regression neural networks, 181

Luukka, 2006, Similarity classifier with generalized mean applied to medical data, Comput. Biol. Med., 36, 1026, 10.1016/j.compbiomed.2005.05.008

Elgawi, 2007, Online incremental random forests, 102

Park, 2008, Novel incremental principal component analysis with improved performance, 592

Bashir, 2014, An efficient rule-based classification of diabetes using ID3, C4. 5, & CART ensembles, frontiers of information technology (FIT), 226

Bashir, 2016, HMV: a medical decision support framework using multi-layer classifiers for disease prediction, J. Comput. Sci., 13, 10, 10.1016/j.jocs.2016.01.001

Ishibuchi, 2004, Comparison of heuristic criteria for fuzzy rule selection in classification problems, Fuzzy Optim. Decis. Mak., 3, 119, 10.1023/B:FODM.0000022041.98349.12