A deep learning approach for credit scoring using credit default swaps

Engineering Applications of Artificial Intelligence - Tập 65 - Trang 465-470 - 2017
Cuicui Luo1, Desheng Wu1, Dexiang Wu1
1Stockholm Business School, Stockholm University, Stockholm, Sweden

Tài liệu tham khảo

Abdel-Zaher, 2016, Breast cancer classification using deep belief networks, Expert Syst. Appl., 46, 139, 10.1016/j.eswa.2015.10.015 Bellotti, 2009, Support vector machines for credit scoring and discovery of significant features, Expert Syst. Appl., 36, 3302, 10.1016/j.eswa.2008.01.005 Bellotti, 2011, A note comparing support vector machines and ordered choice models predictions of international banks ratings, Decis. Support Syst., 51, 682, 10.1016/j.dss.2011.03.008 Bhattacharyya, 2011, Data mining for credit card fraud: a comparative study, Decis. Support Syst., 50, 602, 10.1016/j.dss.2010.08.008 Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory. ACM, pp. 144–152. Breiman, 1984 Hall, 2009, The weka data mining software an update, ACM SIGKDD Explor. Newsl., 11, 10, 10.1145/1656274.1656278 Han, 2013, Orthogonal support vector machine for credit scoring, Eng. Appl. Artif. Intell., 26, 848, 10.1016/j.engappai.2012.10.005 Hastie, 1998, Classification by pairwise coupling, Ann. Stat., 26, 451, 10.1214/aos/1028144844 Hinton, 2006, A fast learning algorithm for deep belief nets, Neural Comput., 18, 1527, 10.1162/neco.2006.18.7.1527 Hinton, 2006, Reducing the dimensionality of data with neural networks, Science, 313, 504, 10.1126/science.1127647 Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp. 1097–1105. Le, D., Provost, E.M., 2013. Emotion recognition from spontaneous speech using hidden markov models with deep belief networks. In: Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE Workshop on. IEEE, pp. 216–221. Le Cessie, 1992, Ridge estimators in logistic regression, Appl. Stat., 191, 10.2307/2347628 Lessmann, 2015, Benchmarking state-of-the-art classification algorithms for credit scoring: an update of research, Eur. J. Oper. Res., 247, 124, 10.1016/j.ejor.2015.05.030 Li, 2006, The evaluation of consumer loans using support vector machines, Expert Syst. Appl., 30, 772, 10.1016/j.eswa.2005.07.041 Ling, 2013, Modeling spectral envelopes using restricted boltzmann machines and deep belief networks for statistical parametric speech synthesis, IEEE Trans. Audio Speech Lang. Process., 21, 2129, 10.1109/TASL.2013.2269291 Mohamed, 2012, Acoustic modeling using deep belief networks, IEEE Trans. Audio Speech Lang. Process., 20, 14, 10.1109/TASL.2011.2109382 Platt, J., et al., 1998. Sequential minimal optimization: A fast algorithm for training support vector machines. Ribeiro, B., Lopes, N., 2011. Deep belief networks for financial prediction. In: International Conference on Neural Information Processing. Springer, pp. 766–773. Saberi, 2013, A granular computing-based approach to credit scoring modeling, Neurocomputing, 122, 100, 10.1016/j.neucom.2013.05.020 Salakhutdinov, R., Mnih, A., Hinton, G., 2007. Restricted boltzmann machines for collaborative filtering. In: Proceedings of the 24th international conference on Machine learning. ACM, pp. 791–798. Schebesch, 2005, Support vector machines for classifying and describing credit applicants: detecting typical and critical regions, J. Oper. Res. Soc., 56, 1082, 10.1057/palgrave.jors.2602023 Tamilselvan, 2013, Failure diagnosis using deep belief learning based health state classification, Reliab. Eng. Syst. Saf., 115, 124, 10.1016/j.ress.2013.02.022 Van Gestel, 2006, Bayesian kernel based classification for financial distress detection, Eur. J. Oper. Res., 172, 979, 10.1016/j.ejor.2004.11.009 West, 2000, Neural network credit scoring models, Comput. Oper. Res., 27, 1131, 10.1016/S0305-0548(99)00149-5 Zhong, 2014, Comparing the learning effectiveness of bp, elm, i-elm, and svm for corporate credit ratings, Neurocomputing, 128, 285, 10.1016/j.neucom.2013.02.054