A deep learning approach for credit scoring using credit default swaps
Tài liệu tham khảo
Abdel-Zaher, 2016, Breast cancer classification using deep belief networks, Expert Syst. Appl., 46, 139, 10.1016/j.eswa.2015.10.015
Bellotti, 2009, Support vector machines for credit scoring and discovery of significant features, Expert Syst. Appl., 36, 3302, 10.1016/j.eswa.2008.01.005
Bellotti, 2011, A note comparing support vector machines and ordered choice models predictions of international banks ratings, Decis. Support Syst., 51, 682, 10.1016/j.dss.2011.03.008
Bhattacharyya, 2011, Data mining for credit card fraud: a comparative study, Decis. Support Syst., 50, 602, 10.1016/j.dss.2010.08.008
Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory. ACM, pp. 144–152.
Breiman, 1984
Hall, 2009, The weka data mining software an update, ACM SIGKDD Explor. Newsl., 11, 10, 10.1145/1656274.1656278
Han, 2013, Orthogonal support vector machine for credit scoring, Eng. Appl. Artif. Intell., 26, 848, 10.1016/j.engappai.2012.10.005
Hastie, 1998, Classification by pairwise coupling, Ann. Stat., 26, 451, 10.1214/aos/1028144844
Hinton, 2006, A fast learning algorithm for deep belief nets, Neural Comput., 18, 1527, 10.1162/neco.2006.18.7.1527
Hinton, 2006, Reducing the dimensionality of data with neural networks, Science, 313, 504, 10.1126/science.1127647
Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp. 1097–1105.
Le, D., Provost, E.M., 2013. Emotion recognition from spontaneous speech using hidden markov models with deep belief networks. In: Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE Workshop on. IEEE, pp. 216–221.
Le Cessie, 1992, Ridge estimators in logistic regression, Appl. Stat., 191, 10.2307/2347628
Lessmann, 2015, Benchmarking state-of-the-art classification algorithms for credit scoring: an update of research, Eur. J. Oper. Res., 247, 124, 10.1016/j.ejor.2015.05.030
Li, 2006, The evaluation of consumer loans using support vector machines, Expert Syst. Appl., 30, 772, 10.1016/j.eswa.2005.07.041
Ling, 2013, Modeling spectral envelopes using restricted boltzmann machines and deep belief networks for statistical parametric speech synthesis, IEEE Trans. Audio Speech Lang. Process., 21, 2129, 10.1109/TASL.2013.2269291
Mohamed, 2012, Acoustic modeling using deep belief networks, IEEE Trans. Audio Speech Lang. Process., 20, 14, 10.1109/TASL.2011.2109382
Platt, J., et al., 1998. Sequential minimal optimization: A fast algorithm for training support vector machines.
Ribeiro, B., Lopes, N., 2011. Deep belief networks for financial prediction. In: International Conference on Neural Information Processing. Springer, pp. 766–773.
Saberi, 2013, A granular computing-based approach to credit scoring modeling, Neurocomputing, 122, 100, 10.1016/j.neucom.2013.05.020
Salakhutdinov, R., Mnih, A., Hinton, G., 2007. Restricted boltzmann machines for collaborative filtering. In: Proceedings of the 24th international conference on Machine learning. ACM, pp. 791–798.
Schebesch, 2005, Support vector machines for classifying and describing credit applicants: detecting typical and critical regions, J. Oper. Res. Soc., 56, 1082, 10.1057/palgrave.jors.2602023
Tamilselvan, 2013, Failure diagnosis using deep belief learning based health state classification, Reliab. Eng. Syst. Saf., 115, 124, 10.1016/j.ress.2013.02.022
Van Gestel, 2006, Bayesian kernel based classification for financial distress detection, Eur. J. Oper. Res., 172, 979, 10.1016/j.ejor.2004.11.009
West, 2000, Neural network credit scoring models, Comput. Oper. Res., 27, 1131, 10.1016/S0305-0548(99)00149-5
Zhong, 2014, Comparing the learning effectiveness of bp, elm, i-elm, and svm for corporate credit ratings, Neurocomputing, 128, 285, 10.1016/j.neucom.2013.02.054