Cluster algebras II: Finite type classification
Tài liệu tham khảo
Adler, I.: Abstract polytopes, Ph.D. thesis, Department of Operations Research, Stanford University, 1971
Aschbacher, M.: Finite groups acting on homology manifolds. Pac. J. Math. 181, Special Issue, 3–36 (1997)
Barvinok, A.: A course in convexity. Am. Math. Soc. 2002
Bolker, E., Guillemin, V., Holm, T.: How is a graph like a manifold? math.CO/0206103
Bott, R., Taubes, C.: On the self-linking of knots. Topology and physics. J. Math. Phys. 35, 5247–5287 (1994)
Bourbaki, N.: Groupes et algèbres de Lie. Ch. IV–VI. Paris: Hermann 1968
Chapoton, F., Fomin, S., Zelevinsky, A.: Polytopal realizations of generalized associahedra, Can. Math. Bull. 45, 537–566 (2002)
Fomin, S., Zelevinsky, A.: Double Bruhat cells and total positivity. J. Am. Math. Soc. 12, 335–380 (1999)
Fomin, S., Zelevinsky, A.: Cluster algebras I: Foundations. J. Am. Math. Soc. 15, 497–529 (2002)
Fomin, S., Zelevinsky, A.: The Laurent phenomenon. Adv. Appl. Math. 28, 119–144 (2002)
Fomin, S., Zelevinsky, A.: Y-systems and generalized associahedra. To appear in Ann. Math. (2)
Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and Poisson geometry. math.QA/0208033
Gelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants and Multidimensional Determinants, 523 pp. Boston: Birkhäuser 1994
Guillemin, V., Zara, C.: Equivariant de Rham theory and graphs. Asian J. Math. 3, 49–76 (1999)
Kac, V.: Infinite dimensional Lie algebras, 3rd edition. Cambridge: Cambridge University Press 1990
Kung, J., Rota, G.-C.: The invariant theory of binary forms. Bull. Am. Math. Soc., New. Ser. 10, 27–85 (1984)
Lee, C.W.: The associahedron and triangulations of the n-gon. Eur. J. Comb. 10, 551–560 (1989)
Lusztig, G.: Total positivity in reductive groups. In: Lie theory and geometry: in honor of Bertram Kostant. Progress in Mathematics 123. Birkhäuser 1994
Lusztig, G.: Introduction to total positivity. In: Positivity in Lie theory: open problems. de Gruyter Exp. Math. 26, 133–145. Berlin: de Gruyter 1998
Markl, M.: Simplex, associahedron, and cyclohedron. Contemp. Math. 227, 235–265 (1999)
Marsh, R., Reineke, M., Zelevinsky, A.: Generalized associahedra via quiver representations. To appear in Trans. Am. Math. Soc.
Massey, W.S.: Algebraic topology: an introduction. Springer-Verlag 1977
McMullen, P., Schulte, E.: Abstract Regular Polytopes. Cambridge: Cambridge University Press 2003
Simion, R.: A type-B associahedron. Adv. Appl. Math. 30, 2–25 (2003)
Stasheff, J.D.: Homotopy associativity of H-spaces. I, II. Trans. Am. Math. Soc. 108, 275–292, 293–312 (1963)
Sturmfels, B.: Algorithms in invariant theory. Springer-Verlag 1993
Zelevinsky, A.: From Littlewood-Richardson coefficients to cluster algebras in three lectures. In: Symmetric Functions 2001: Surveys of Developments and Perspectives, S. Fomin (Ed.), NATO Science Series II, vol. 74. Kluwer Academic Publishers 2002