Neutron activation analysis of air-filters collected in Spokane, WA

Journal of Radioanalytical and Nuclear Chemistry - Tập 276 - Trang 199-205 - 2007
D. L. Dugan1, R. H. Filby2, J. T. Elliston2, P. T. Buckley3, C. S. Claiborn2
1Washington State University, , Pullman, USA
2Washington State University, Pullman, USA
3Lewis and Clark State College, Lewiston, USA

Tóm tắt

More than 2200 atmospheric particulate matter filters were collected from 1995 through 2002 in the Spokane, WA area for the Spokane Air-Filters Project. The samples were sent to the US EPA in Research Triangle Park, NC for energy dispersive X-ray fluorescence (XRF) analysis and then delivered to the Washington State University Nuclear Radiation Center for neutron activation analysis (NAA). There were 28 elements of interest for the NAA portion of the project; however, due to detector efficiencies, background effects, and composition loading on each filter, only 15 of the 28 elements analyzed for produced valid results above the detection limit due to Compton background noise and blank subtraction. The 15 detectable elements with their six year average with associated 95% confidence interval concentrations in ng/m3 are: As (0.384±0.88), K (50.0±194), La (0.051±0.251), Na (61.9±421), Sm (0.00928±0.072), Au (0.00154±0.149), Br (1.06±1.5), Ce (0.164±0.969), Co (0.0399±0.122), Cr (0.479±3.31), Fe (110±227), Sb (0.474±1.64), Sc (0.0197±0.00548), Th (0.011±0.0603), and Zn (12.4±32.6).

Tài liệu tham khảo

G. M. Masters, Introduction to Environmental Engineering and Science, 2nd ed., Prentice-Hall, Inc., 1998, 332. Lei Cao, Weizhi Tian, Bangfa Ni, Yangmei Zhang, Pingsheng Wang, Atmos. Environ., 36 (2002) 1951. C. S. Claiborn, Testing the metals hypothesis in Spokane: Daily associations between respiratory and cardiovascular outcomes and airborne fine particulate matter species. The Mickey Leland National Urban Air Toxics Research Center Grant Application, 1999. M. D. Hoffman, Elemental Analysis and Receptor Modeling of Airborne Particulate Matter in Spokane, Washington, Thesis submittal for Master’s of Science in Environmental Science at Washington State University, May 2002. D. Jaffe, S. Tamura, J. Harris, Atmos. Environ., 39 (2003) 297. S. Szidat, A. Schmidt, J. Handl, D. Jakob, R. Michel, H.-A. Synal, M. Suter, J. Radioanal. Nucl. Chem., 244 (2000) 45. R. H. Filby, Pure Appl. Chem., 67 (1995) 1929. S. M. Libes, J. Chem. Educ., 12 (1999) 76, Research Library p. 1642. M. Betti, L. Aldave De Las Heras, J. Environ. Radioact., 72 (2004) 233. M. C. Freitas, S. M. Almeida, M. A. Reis, M. G. Ventura, J. Radioanal. Nucl. Chem., 262 (2004) 235. G. F. Knoll, Radiation Detection and Measurements, 2nd ed., John Wiley & Sons, Inc., 1979, 1989, 432. R. C. Koch, Activation Analysis Handbook, Academic Press Inc., 1960, p. 24. Y. S. Chung, Y. J. Chung, E. S. Jeong, S. Y. Cho, J. Radioanal. Nucl. Chem., 17 (1997) 83. S. Geib, J. W. Einax, Fresenius J. Anal. Chem., 370 (2001) 673. W. D. Ehmann, D. E. Vance, Radiochemistry and Nuclear Methods and Analysis, John Wiley & Sons, Inc., 1991, p. 265. L. A. Currie, Anal. Chem., 40 (1968) 586. E. Rizzio, G. Bergamschi, A. Profumo, M. Gallorini, J. Radioanal. Nucl. Chem., 248 (2001) 21.