Solid-supported lipid multilayers: Structure factor and fluctuations

The European Physical Journal E - Tập 12 - Trang 283-290 - 2018
D. Constantin1, U. Mennicke1, C. Li1, T. Salditt1
1Institut für Röntgenphysik, Göttingen, Germany

Tóm tắt

We present a theoretical description of the thermal fluctuations in a solid-supported stack of lipid bilayers, for the case of vanishing surface tension $\gamma = 0$ and in the framework of continuous smectic elasticity. The model is successfully used to model the reflectivity profile of a thin (16 bilayers) DMPC sample under applied osmotic pressure and the diffuse scattering from a thick (800 bilayers) stack. We compare our model to previously existing theories.

Tài liệu tham khảo

J. Katsaras, V.A. Raghunathan, Aligned lipid-water systems, in Lipid Bilayers: Structure and Interactions, edited by J. Katsaras, T. Gutberlet (Springer, 2000). T. Salditt, C. Li, A. Spaar, U. Mennicke, Europhys. J. E 7, 105 (2002). Y. Lyatskaya, Y. Liu, S. Tristram-Nagle, J. Katsaras, J.F. Nagle, Phys. Rev. E 63, 011907 (2000). B. Bechinger, J. Membrane Biol. 156, 197 (1997). A. Caillé, C. R. Acad. Sci. Paris, Sér. B 274, 891 (1972). J. Als-Nielsen, J.D. Litster, D. Birgenau, M. Kaplan, C.R. Safinya, A. Lindgard-Andersen, S. Mathiesen, Phys. Rev. B 22, 312 (1980). C.R. Safinya, D. Roux, G.S. Smith, S.K. Sinha, P. Dimon, N.A. Clark, A.-M. Bellocq, Phys. Rev. Lett. 57, 2718 (1986). C.R. Safinya, D. Roux, G.S. Smith, Phys. Rev. Lett. 62, 1134 (1989). F. Nallet, R. Laversanne, D. Roux, J. Phys II 3, 487 (1993). R. Zhang, R.M. Sutter, J.F. Nagle, Phys. Rev. E 50, 5047 (1994). J.F. Nagle, R. Zhang, S. Tristram-Nagle, W. Sun, H.I. Petrache, R.M. Suter, Biophys. J. 70, 1419 (1996). G. Pabst, M. Rappolt, H. Amenitsch, P. Laggner, Phys. Rev. E 62, 4000 (2000). R. Hołyst, Phys. Rev. A 44, 3692 (1991). A.N. Shalaginov, V.P. Romanov, Phys. Rev. E 48, 1073 (1993). N. Lei, C.R. Safinya, R.F. Bruinsma, J. Phys. II 5, 1155 (1995) E.A.L. Mol, J.D. Shindler, A.N. Shalaginov, W.H. de Jeu, Phys. Rev. E 54, 536 (1996). P. Oswald, P. Pieranski, The Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (in French), (CPI, Paris, 2002). D.K.G. de Boer, Phys. Rev. E 59, 1880 (1999). V.P. Romanov, S.V. Ul’yanov, Phys. Rev. E 66, 061701 (2002). A. Poniewierski, R. Hołyst, Phys. Rev. B 47, 9840 (1993). S.A. Safran, Adv. Phys. 48, 395 (1999). W. Helfrich, Z. Naturforsch. A 33, 305 (1978). T. Salditt, C. Münster, J. Lu, M. Vogel, W. Fenzl, A. Souvorov, Phys. Rev. E 60, 7285 (1999). S.K. Sinha, E.B. Sirota, S. Garoff, H.B. Stanley, Phys. Rev. B 38, 2297 (1988). L. Perino-Gallice, G. Fragneto, U. Mennicke, T. Salditt, F. Rieutord, Europhys. J. E 8, 275 (2002). J. Als-Nielsen, D. McMorrow, Elements of Modern X-Ray Physics (Wiley, Chichester, 2001). U. Mennicke, D. Constantin, T. Salditt, in preparation. U. Mennicke, T. Salditt, Langmuir 18, 8172 (2002). The data was obtained from the web site of the Membrane Biophysics Laboratory at the Brock University in Canada: http://aqueous.labs.brocku.ca/osfile.html. The value for the osmotic pressure induced by a PEG 20000 solution at 3.6 wt. % is only available at \(20^{\circ}\)C as \(1.4 10^{4} \gtrsim{Pa}\). At \(40^{\circ}\)C, temperature at which the experiments were performed, we estimate that the pressure is lower by about 10 to 20%, by using the temperature dependence of PEG 8000 solutions (available on the same site). S.K. Sinha, J. Phys. III 4, 1543 (1994). T. Salditt, T.H. Metzger, J. Peisl, Phys. Rev. Lett. 73, 2228 (1994) T. Salditt, M. Vogel, W. Fenzl, Phys. Rev. Lett. 90, 178101 (2003).