Exposure to non-continuous rotating magnetic field induces metabolic strain-specific response of Komagataeibacter xylinus
Tài liệu tham khảo
Rekena, 2019, The role of magnetic field in the biopharmaceutical production: current perspectives, Biotechnol. Rep. (Amst), 22
Hunt, 2009, Electromagnetic biostimulation of living cultures for biotechnology, biofuel and bioenergy applications, Int. J. Mol. Sci., 10, 4515, 10.3390/ijms10104515
Buchachenko, 2017, New possibilities for magnetic control of chemical and biochemical reactions, Acc. Chem. Res., 50, 877, 10.1021/acs.accounts.6b00608
Drozd, 2018, The influence of rotating magnetic Field on biochemical processing, 67
Rakoczy, 2017, Effects of a rotating magnetic field on gas-liquid mass transfer coefficient, Chem. Eng. J., 327, 608, 10.1016/j.cej.2017.06.132
Fijałkowski, 2015, Effects of rotating magnetic field exposure on the functional parameters of different species of bacteria, Electromagn. Biol. Med., 34, 48, 10.3109/15368378.2013.869754
Nawrotek, 2014, Effects of 50 Hz rotating magnetic field on the viability of Escherichia coli and Staphylococcus aureus, Electromagn. Biol. Med., 33, 29, 10.3109/15368378.2013.783848
Konopacki, 2019, The analysis of rotating magnetic field as a trigger of Gram-positive and Gram-negative bacteria growth, Biochem. Eng. J., 141, 259, 10.1016/j.bej.2018.10.026
Oncul, 2016, Effect of extremely low frequency electromagnetic fields on bacterial membrane, Int. J. Radiat. Biol., 92, 42, 10.3109/09553002.2015.1101500
Mihoub, 2012, Effects of static magnetic fields on growth and membrane lipid composition of Salmonella typhimurium wild-type and dam mutant strains, Int. J. Food Microbiol., 157, 259, 10.1016/j.ijfoodmicro.2012.05.017
Morelli, 2005, Effects of extremely low frequency electromagnetic fields on membrane-associated enzymes, Arch. Biochem. Biophys., 441, 191, 10.1016/j.abb.2005.07.011
Konopacka, 2019, The effect of rotating magnetic field on bioethanol production by yeast strain modified by ferrimagnetic nanoparticles, J. Magn. Magn. Mater., 473, 176, 10.1016/j.jmmm.2018.10.053
Keshk, 2014, Bacterial cellulose production and its industrial applications, J. Bioprocess. Biotech., 04, 10.4172/2155-9821.1000150
Ul-Islam, 2015, Bacterial cellulose composites: synthetic strategies and multiple applications in bio-medical and electro-conductive fields, Biotechnol. J., 10, 1847, 10.1002/biot.201500106
Moniri, 2017, Production and status of bacterial cellulose in biomedical engineering, Nanomaterials, 7, 257, 10.3390/nano7090257
Keshk, 2014, Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus, Carbohydr. Polym., 99, 98, 10.1016/j.carbpol.2013.08.060
Lu, 2016, Effect of organic acids on bacterial cellulose produced by Acetobacter xylinum, Res. Rev. J. Microbiol. Biotechnol., 5, 1
Ryngajłło, 2019, Comparative genomics of the Komagataeibacter strains-Efficient bionanocellulose producers, Microbiologyopen, 8, 10.1002/mbo3.731
Florea, 2016, Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain, Proc. Natl. Acad. Sci. U. S. A., 113, E3431, 10.1073/pnas.1522985113
Jacek, 2019, Modification of bacterial nanocellulose properties through mutation of motility related genes in Komagataeibacter hansenii ATCC 53582, N. Biotechnol., 52, 60, 10.1016/j.nbt.2019.05.004
Shigematsu, 2005, Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp, J. Biosci. Bioeng., 99, 415, 10.1263/jbb.99.415
Fijałkowski, 2015, Modification of bacterial cellulose through exposure to the rotating magnetic field, Carbohydr. Polym., 133, 52, 10.1016/j.carbpol.2015.07.011
Kumbhar, 2015, Fruit peels support higher yield and superior quality bacterial cellulose production, Appl. Microbiol. Biotechnol., 99, 6677, 10.1007/s00253-015-6644-8
Wu, 2010, Mutagenesis induced by high hydrostatic pressure treatment: a useful method to improve the bacterial cellulose yield of a Gluconoacetobacter xylinus strain, Cellulose, 17, 399, 10.1007/s10570-009-9388-8
Yamamoto, 1996, In situ crystallization of bacterial cellulose II. Influences of different polymeric additives on the formation of celluloses Iα and Iβ at the early stage of incubation, Cellulose, 3, 229, 10.1007/BF02228804
Nečas, 2012, Gwyddion: an open-source software for SPM data analysis, Open Phys., 10, 10.2478/s11534-011-0096-2
Jagannath, 2008, The effect of pH, sucrose and ammonium sulphate concentrations on the production of bacterial cellulose (Nata-de-coco) by Acetobacter xylinum, World J. Microbiol. Biotechnol., 24, 2593, 10.1007/s11274-008-9781-8
Lê, 2008, FactoMineR an R package for multivariate analysis, J. Stat. Soft., 25, 10.18637/jss.v025.i01
Wang, 2018, Insights into bacterial cellulose biosynthesis from different carbon sources and the associated biochemical transformation pathways in Komagataeibacter sp. W1, Polymers (Basel), 10
Tonouchi, 1996, Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum, Biosci. Biotechnol. Biochem., 60, 1377, 10.1271/bbb.60.1377
Lin, 2013, Biosynthesis, production and applications of bacterial cellulose, Cellulose, 20, 2191, 10.1007/s10570-013-9994-3
Li, 2012, Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved, Appl. Microbiol. Biotechnol., 96, 1479, 10.1007/s00253-012-4242-6
Zhong, 2013, Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production, Appl. Microbiol. Biotechnol., 97, 6189, 10.1007/s00253-013-4908-8
Du, 2016, Structure of the Cellulose Synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution, PLoS One, 11, 10.1371/journal.pone.0155886
Naritomi, 1998, Effect of ethanol on bacterial cellulose production from fructose in continuous culture, J. Ferment. Bioeng., 85, 598, 10.1016/S0922-338X(98)80012-3
Krystynowicz, 2002, Factors affecting the yield and properties of bacterial cellulose, J. Ind. Microbiol. Biotechnol., 29, 189, 10.1038/sj.jim.7000303
Park, 2003, Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol, Biotechnol. Lett., 25, 2055, 10.1023/B:BILE.0000007065.63682.18
YUNOKI, 2004, Role of ethanol in improvement of bacterial cellulose production: analysis using 13C-Labeled carbon sources, FSTR, 10, 307, 10.3136/fstr.10.307
Ross, 1991, Cellulose biosynthesis and function in bacteria, Microbiol. Rev., 55, 35, 10.1128/MR.55.1.35-58.1991
Yakushi, 2010, Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology, Appl. Microbiol. Biotechnol., 86, 1257, 10.1007/s00253-010-2529-z
Matsushita, 1995, Generation mechanism and purification of an inactive form convertible in vivo to the active form of quinoprotein alcohol dehydrogenase in Gluconobacter suboxydans, J. Bacteriol., 177, 6552, 10.1128/JB.177.22.6552-6559.1995
Ryngajłło, 2019, Effect of ethanol supplementation on the transcriptional landscape of bionanocellulose producer Komagataeibacter xylinus E25, Appl. Microbiol. Biotechnol., 103, 6673, 10.1007/s00253-019-09904-x
Liu, 2018, Complete genome analysis of Gluconacetobacter xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and metabolic regulation, Sci. Rep., 8, 6266, 10.1038/s41598-018-24559-w
Gromet-Elhanan, 1963, Synthesis of cellulose by Acetobacter xylinum VI. Growth on citric acid-cycle intermediates, J. Bacteriol., 85, 284, 10.1128/JB.85.2.284-292.1963
Jung, 2010, Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks, Bioresour. Technol., 101, 3602, 10.1016/j.biortech.2009.12.111
Li, 2002, Functional characterization of CitM, the Mg2+-citrate transporter, J. Membr. Biol., 185, 9, 10.1007/s00232-001-0106-1
Warner, 2002, Growth of Bacillus subtilis on citrate and isocitrate is supported by the Mg2+-citrate transporter CitM, Microbiology (Reading, Engl.), 148, 3405, 10.1099/00221287-148-11-3405
Chen, 2005, Enhancement of inosine production by Bacillus subtilis through suppression of carbon overflow by sodium citrate, Biotechnol. Lett., 27, 689, 10.1007/s10529-005-4686-1
Jia, 2004, Cellulose production from Gluconobacter oxydans TQ-B2, Biotechnol. Bioprocess Eng., 9, 166, 10.1007/BF02942287
Morgan, 2014, Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP, Nat. Struct. Mol. Biol., 21, 489, 10.1038/nsmb.2803
Mohammadkazemi, 2015, Production of bacterial cellulose using different carbon sources and culture media, Carbohydr. Polym., 117, 518, 10.1016/j.carbpol.2014.10.008
Lee, 2014, More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites, Macromol. Biosci., 14, 10, 10.1002/mabi.201300298
Drozd, 2017, Evaluation of usefulness of 2DCorr technique in assessing physicochemical properties of bacterial cellulose, Carbohydr. Polym., 161, 208, 10.1016/j.carbpol.2016.12.063
Ul-Islam, 2012, Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification, Carbohydr. Polym., 88, 596, 10.1016/j.carbpol.2012.01.006
Reiniati, 2017, Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals, Crit. Rev. Biotechnol., 37, 510, 10.1080/07388551.2016.1189871
Sheykhnazari, 2011, Bacterial synthesized cellulose nanofibers; Effects of growth times and culture mediums on the structural characteristics, Carbohydr. Polym., 86, 1187, 10.1016/j.carbpol.2011.06.011
Fijałkowski, 2017, Increased water content in bacterial cellulose synthesized under rotating magnetic fields, Electromagn. Biol. Med., 36, 192, 10.1080/15368378.2016.1243554
Blank, 2005, Do electromagnetic fields interact with electrons in the Na, K-ATPase?, Bioelectromagnetics, 26, 677, 10.1002/bem.20167
Ye, 2016, Biomechanics of cell membrane under low-frequency time-varying magnetic field: a shell model, Med. Biol. Eng. Comput., 54, 1871, 10.1007/s11517-016-1478-9
Ohata, 2004, Effect of a static magnetic field on ion transport in a cellulose membrane, J. Colloid Interface Sci., 270, 413, 10.1016/j.jcis.2003.09.035
Gu, 2019, The effect of magnetic field on the hydration of cation in solution revealed by THz spectroscopy and MDs, Colloids Surf. A Physicochem. Eng. Asp., 582, 10.1016/j.colsurfa.2019.123822
Rakoczy, 2010, Enhancement of solid dissolution process under the influence of rotating magnetic field, Chem. Eng. Process. Process. Intensif., 49, 42, 10.1016/j.cep.2009.11.004
Ye, 2010, Transmembrane potential induced on the internal organelle by a time-varying magnetic field: a model study, J. Neuroeng. Rehabil., 7, 12, 10.1186/1743-0003-7-12
Halder, 2015, Alteration of Zeta potential and membrane permeability in bacteria: a study with cationic agents, Springer Plus, 4, 672, 10.1186/s40064-015-1476-7
Gomes Soares, 2017, Effect of surface bilayer charges on the magnetic field around ionic channels, Physica B Condens. Matter, 504, 86, 10.1016/j.physb.2016.09.036
Wasak, 2019, Rotating magnetic field as tool for enhancing enzymes properties - laccase case study, Sci. Rep., 9, 3707, 10.1038/s41598-019-39198-y
Wasak, 2019, The influence of rotating magnetic field on bio-catalytic dye degradation using the horseradish peroxidase, Biochem. Eng. J., 147, 81, 10.1016/j.bej.2019.04.007
Nossol, 1993, Influence of weak static and 50 Hz magnetic fields on the redox activity of cytochrome-C oxidase, Bioelectromagnetics, 14, 361, 10.1002/bem.2250140408
Blank, 1998, Frequency dependence of cytochrome oxidase activity in magnetic fields, Bioelectrochem. Bioenerg., 46, 139, 10.1016/S0302-4598(98)00126-3
Blank, 1997, Frequency dependence of Na,K-ATPase function in magnetic fields, Bioelectrochem. Bioenerg., 42, 231, 10.1016/S0302-4598(96)05114-8
Wang, 2017, Magnetic fields and reactive oxygen species, Int. J. Mol. Sci., 18, 10.3390/ijms18102175
Ezraty, 2017, Oxidative stress, protein damage and repair in bacteria, Nat. Rev. Microbiol., 15, 385, 10.1038/nrmicro.2017.26
Montoya, 2017, Magnetic fields, radicals and cellular activity, Electromagn. Biol. Med., 36, 102
Tessaro, 2015, Bacterial growth rates are influenced by cellular characteristics of individual species when immersed in electromagnetic fields, Microbiol. Res., 172, 26, 10.1016/j.micres.2014.12.008
Nascimento, 2003, Glucose consume and growth of E. coli under electromagnetic field, Rev. Inst. Med. Trop. Sao Paulo, 45, 65, 10.1590/S0036-46652003000200002
Gullo, 2019, Exploring K2G30 genome: a high bacterial cellulose producing strain in glucose and mannitol based media, Front. Microbiol., 10, 58, 10.3389/fmicb.2019.00058
Hollensteiner, 2020, Genome sequence of komagataeibacter saccharivorans strain JH1, isolated from fruit flies, Microbiol. Resour. Announc., 9, 10.1128/MRA.00098-20
Ryngajłło, 2020, Towards control of cellulose biosynthesis by Komagataeibacter using systems-level and strain engineering strategies: current progress and perspectives, Appl. Microbiol. Biotechnol., 104, 6565, 10.1007/s00253-020-10671-3
Römling, 2015, Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions, Trends Microbiol., 23, 545, 10.1016/j.tim.2015.05.005
Jacek, 2019, Molecular aspects of bacterial nanocellulose biosynthesis, Microb. Biotechnol., 12, 633, 10.1111/1751-7915.13386
Beretta, 2019, The effects of electric, magnetic and electromagnetic fields on microorganisms in the perspective of bioremediation, Rev. Environ. Sci. Biotechnol., 18, 29, 10.1007/s11157-018-09491-9
Fijalkowski, 2016, The effect of rotating magnetic field on enterotoxin genes expression in Staphylococcus aureus strains, J. Magn., 21, 141, 10.4283/JMAG.2016.21.1.141
Pfeffer, 2016, Complete genome sequence of Gluconacetobacter hansenii strain NQ5 (ATCC 53582), an efficient producer of bacterial cellulose, Genome Announc., 4