Synthesis, Crystal Structure, DFT Calculations and Hirshfeld Surface Analysis of 3-Chloro-3-methyl-r(2),c(6)-bis(p-methoxyphenyl)piperidin-4-one

Springer Science and Business Media LLC - Tập 50 - Trang 41-51 - 2019
R. Arulraj, S. Sivakumar1,2, K. Rajkumar1, Jerry P. Jasinski3, Manpreet Kaur3, A. Thiruvalluvar4
1Research and Development Centre, Bharathiar University, Coimbatore, India
2Department of Chemistry, Thiruvalluvar Arts and Science College, Kurinjipadi, India
3Department of Chemistry, Keene State College, Keene, USA
4Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur, India

Tóm tắt

The title compound, C20H22ClNO3, [common name: 3-chloro-3-methyl-r(2),c(6)-bis(p-methoxyphenyl)piperidin-4-one] crystallizes in the P21/c space group with unit cell parameters a = 13.4020(11) Å, b = 7.7888(5) Å and c = 18.1721(14) Å, β = 108.250(9)°, Z = 4. The central piperidin-4-one ring (N1/C1–C5), adopts a slightly distorted chair conformation and an equatorial orientation of all its substituents except for chlorine which is axially located. The dihedral angle between the mean planes of the two phenyl rings is 47.9(4)° and between the piperidin-4- one ring and pendant phenyl rings is 68.8(2)° (C6–C11) and 73.1(6)° (C13–C18), respectively. Crystal packing is stabilized by weak C–H⋯O intermolecular interactions forming chains along the b-axis. Additional weak Cg–π interactions between nearby phenyl rings are also observed. A comparison of these bond lengths and angles within the crystal with Density Functional Theory (DFT) geometry optimized calculations at the B3LYP/6-31+G (d) level has been determined. Hirshfeld surface analysis for determining the molecular shape and visually analyzing the intermolecular interactions in the crystal structure employing 3D molecular surface contours and 2D fingerprint plots gave enrichment ratios for H⋯H, O⋯H, Cl⋯H and C⋯H contacts compared to C–C, Cl⋯Cl and C⋯Cl contacts indicating a higher propensity for O–H interactions to form in this crystal. Electronic transitions have also been predicted by DFT Molecular Orbital calculations and compared to experimental absorption spectra. Molecular orbital diagrams provide visual representations of the top level molecular orbital surfaces in the compound.

Tài liệu tham khảo

Ribeiro da Silva MAV, Cabral JITA (2007) J Therm Anal Calorim 90:865–871 El-Subbagh HI, Abu-Zaid SM, Mahran MA, Badria FA, Al-obaid AM (2000) J Med Chem 43:2915–2921 Mobio IG, Soldatenkov AT, Federov VO, Ageev EA, Sergeeva ND, Lin S, Stashenku EE, Prostakov NS, Andreeva EL (1989) Khim Farm Zh 23:421–427 Katritzky AR, Fan WJ (1990) J Org Chem 55:3205–3209 Parthiban P, Balasubramanian S, Aridoss G, Kabilan S (2009) Bioorg Med Chem Lett 19:2981–2985 Parthiban P, Pallela R, Kim SK, Park DH, Jeong YT (2011) Bioorg Med Chem Lett 21:6678–6686 Casy A, Coates J, Rostron C (1976) J Pharm Pharmacol 28:110 Ramachandran R, Parthiban P, Doddi A, Ramkumar V, Kabilan S (2007) Acta Cryst E63:o4559 Balamurugan S, Thiruvalluvar A, Butcher RJ, Manimekalai A, Jayabharathi J (2008) Acta Cryst E64:o59 Arulraj R, Sivakumar S, Thiruvalluvar A, Manimekalai A (2016) IUCrData, 1, x160188 Arulraj R, Sivakumar S, Kaur M, Thiruvalluvar A, Jasinski JP (2017) Acta Cryst E73:107–111 Thiruvalluvar A, Balamurugan S, Butcher RJ, Manimekalai A, Jayabharathi J (2007) Acta Cryst E63:o4533 Arulraj R, Sivakumar S, Thiruvalluvar A, Kaur M, Jasinski JP (2016) IUCrData, 1, x161580 Arulraj R, Sivakumar S, Thiruvalluvar A, Manimekalai A (2016) IUCrData, 1, x161982 Rigaku Oxford Diffraction (2014) CrysAlis PRO and CrysAlis RED. The Woodlands, TX, USA Sheldrick GM (2015) Acta Cryst A71:3–8 Sheldrick GM (2015) Acta Cryst C71:3–8 Spek AL (2001) PLATON—a multipurpose crystallographic tool. Ultrecht University, Ultrecht Johnson CK (1976) ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, TN, USA Schmidt JR, Polik WF (2007) WebMO Pro, version 8.0.01e; WebMO, LLc: Holland. http://www.webmo.net Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE,. Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RR, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc., Wallingford CT Gaussian 09,Revision D.01 Becke AD (1998) Phys Rev A38:3098 Lee C, Yang W, Parr RG (1988) Phys Rev B37:785 Hehre WJ, Random L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York Georgakopoulous S, Grondelle RV, Zwan GVD (2004) J Biophys 87:3010–3022 Guzin A (2002) Turk J Chem 26:295–302 Pro IGOR (1988–2009) WaveMetrics, Lake Oswego, Oregon McKinnon JJ, Jayatilaka D, Spackman MA (2007) Chem Commun 37:3214 McKinnon JJ, Spackman MA, Mitchell AS (2004) Acta Cryst B 60:627 Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer 17.5, University of Western Australia, http://hirshfeldsurface.net Cremer D, Pople JA (1975) J Am Chem Soc 97:1354–1358 Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) J Chem Soc Perkin Trans 2:S1–S19