Duality and saddle-point type optimality for interval-valued programming

Springer Science and Business Media LLC - Tập 8 - Trang 1077-1091 - 2013
Yuhua Sun1,2, Xiumei Xu1, Laisheng Wang2
1School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
2College of Science, China Agricultural University, Beijing, China

Tóm tắt

In this paper, Mond-Weir’s type dual in programming problem with an interval-valued objective function and interval-valued inequality constrict conditions is formulated. Duality theorems are established under suitable conditions. A real-valued Lagrangian function for the interval-valued programming is defined. Further, the saddle point of Lagrangian function is also defined and saddle point optimality conditions are presented.

Tài liệu tham khảo

Tanaka, H., Ukuda, T., Asal, K.: On fuzzy mathematical programming. J. Cybern. 3, 37–46 (1984) Ishibuchi, H., Tanaka, H.: Multiobjective programming in optimization of the interval objective function. Eur. J. Oper. Res. 48, 219–225 (1990) Rommelfanger, H.: Linear programming with fuzzy objective. Fuzzy Sets Syst. 29, 31–48 (1989) Tong, S.C.: Interval number and fuzzy number linear programming. Fuzzy Sets Syst. 66, 301–306 (1994) Ida, M.: Portfolio selection problem with interval coefficients. Appl. Math. Lett. 16, 709–713 (2003) Zhou, F., Gordon, H.: Enhanced-interval linear programming. Eur. J. Oper. Res. 199, 323–333 (2009) Huang, Y.F., Baetz, B.W., Huang, G.H.: Violation analysis for solid waste management systems: an interval fuzzy programming approach. J. Environ. Manage. 65, 431–446 (2002) Oliveira, C.: Multiple objective linear programming models with interval coefficients-illustrated overview. Eur. J. Oper. Res. 181, 1434–1463 (2007) Alefeld, G., Mayer, G.: Interval analysis: theory and applications. J. Comput. Appl. Math. 121, 421–464 (2000) Ding, K., Huang, N.J.: A new class of interval projection neural networks for solving interval quadratic program. Chaos Solitons Fract. 25, 718–725 (2008) Li, W., Tian, X.L.: Numerical solution method for general interval quadratic programming. Appl. Math. Comput. 202, 589–595 (2008) Sugimoto, T., Fukushima, M., Ibaraki, T.: A parallel relaxation method for quadratic programming problems with interval constraints. J. Comput. Appl. Math. 60, 219–236 (1995) Jiang, C., Han, X., Liu, G.R., Li, G.Y.: The optimization of the variable binder force in U-shaped forming with uncertain friction coefficient. J. Mater. Process. Technol. 182, 262–267 (2007) Wu, H.C.: The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions. Eur. J. Oper. Res. 196, 49–60 (2009) Chen, S.H., Wu, J., Chen, Y.D.: Interval optimization for uncertain structures. Finite Elem. Anal. Des. 40, 1379–1398 (2004) Wu, H.C.: Wolfe duality for interval-valued optimization. J. Optim. Theory Appl. 138, 497–509 (2008) Wu, H.C.: On interval-valued nonlinear programming problems. J. Math. Anal. Appl. 338, 299–316 (2008) Zhou, H.C., Wang, Y.J.: Optimality condition and mixed duality for interval-valued optimization. Fuzzy Info. Eng. AISC 62, 1315–1323 (2009) Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley-Interscience, New York (2006) Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966) Moore, R.E.: Method and Applications of Interval Analysis. SIAM, Philadelphia (1979) Prékopa, A.: Stochastic Programming. Kluwer Academic Publishers, Boston (1995) Sun, Y.H., Wang, L.S.: Mond-Weir’s type duality for interval-valued programming. CSAE Proc. IEEE Int. Conf. Comput. Sci. Autom. Eng, 27–30 (2012) Sun, Y.H., Wang, L.S.: Duality theory for interval-valued programming. Adv. Sci. Lett. 7, 643–646 (2012) Sun, Y.H., Wang, L.S.: Optimality conditions and duality in nondifferentiable interval-valued programming. J. Ind. Manag. Optim. 9, 131–142 (2013)