Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses
Tóm tắt
Từ khóa
Tài liệu tham khảo
Yang X, Yu Y, Xu J et al (2020) Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. https://doi.org/10.1016/S2213-2600(20)30079-5
Coronavirus disease 2019. https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed 29 Feb 2020
Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ (2006) Nidovirales: evolving the largest RNA virus genome. Virus Res 117:17–37. https://doi.org/10.1016/j.virusres.2006.01.017
Corman VM, Lienau J, Witzenrath M (2019) Coronaviruses as the cause of respiratory infections. Internist 60:1136–1145. https://doi.org/10.1007/s00108-019-00671-5
Woo PCY, Lau SKP, Lam CSF et al (2012) Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol 86:3995–4008. https://doi.org/10.1128/jvi.06540-11
Cotten M, Lam TT, Watson SJ et al (2013) Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus. Emerg Infect Dis 19:736–742. https://doi.org/10.3201/eid1905.130057
Masters PS (2006) The molecular biology of coronaviruses. Adv Virus Res 66:193–292. https://doi.org/10.1016/S0065-3527(06)66005-3
Hussain S, Pan J, Chen Y et al (2005) Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol 79:5288–5295. https://doi.org/10.1128/jvi.79.9.5288-5295.2005
Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J et al (2006) Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol 80:5927–5940. https://doi.org/10.1128/jvi.02501-05
Sawicki SG, Sawicki DL, Siddell SG (2007) A contemporary view of coronavirus transcription. J Virol 81:20–29. https://doi.org/10.1128/jvi.01358-06
Wu F, Zhao S, Yu B et al (2020) A new coronavirus associated with human respiratory disease in China. Nature. https://doi.org/10.1038/s41586-020-2008-3
Van Der Lee R, Buljan M, Lang B et al (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114:6589–6631
Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553–584. https://doi.org/10.1146/annurev-biochem-072711-164947
Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331. https://doi.org/10.1006/jmbi.1999.3110
Dunker AK, Cortese MS, Romero P et al (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148. https://doi.org/10.1111/j.1742-4658.2005.04948.x
Dunker AK, Brown CJ, Obradovic Z (2002) Identification and functions of usefully disordered proteins. Adv Protein Chem 62:25–49
Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764
Liu J, Perumal NB, Oldfield CJ et al (2006) Intrinsic disorder in transcription factors. Biochemistry 45:6873–6888. https://doi.org/10.1021/bi0602718
Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384. https://doi.org/10.1002/jmr.747
Yan J, Kurgan L (2017) DRNApred, fast sequence-based method that accurately predicts and discriminates DNA- and RNA-binding residues. Nucleic Acids Res 45:e84. https://doi.org/10.1093/nar/gkx059
Peng ZKL (2015) High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder. Nucleic Acids Res 43:e121
Giri R, Kumar D, Sharma N, Uversky VN (2016) Intrinsically disordered side of the Zika virus proteome. Front Cell Infect Microbiol 6:144. https://doi.org/10.3389/fcimb.2016.00144
Xue B, Williams RW, Oldfield CJ et al (2010) Viral disorder or disordered viruses: do viral proteins possess unique features? Protein Pept Lett 17:932–951. https://doi.org/10.2174/092986610791498984
Singh A, Kumar A, Yadav R et al (2018) Deciphering the dark proteome of Chikungunya virus. Sci Rep 8:5822. https://doi.org/10.1038/s41598-018-23969-0
Ward JJ, Sodhi JS, McGuffin LJ et al (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645. https://doi.org/10.1016/j.jmb.2004.02.002
Clark K, Karsch-Mizrachi I, Lipman DJ et al (2016) GenBank. Nucleic Acids Res 44:D67–D72. https://doi.org/10.1093/nar/gkv1276
Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. https://doi.org/10.1038/msb.2011.75
Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324. https://doi.org/10.1093/nar/gku316
Peng K, Radivojac P, Vucetic S et al (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7:208. https://doi.org/10.1186/1471-2105-7-208
Peng K, Vucetic S, Radivojac P et al (2005) Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 3:35–60. https://doi.org/10.1142/S0219720005000886
Xue B, Dunbrack RL, Williams RW et al (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 1804:996–1010. https://doi.org/10.1016/j.bbapap.2010.01.011
Romero P, Obradovic Z, Li X et al (2001) Sequence complexity of disordered protein. Proteins Struct Funct Genet 42:38–48. https://doi.org/10.1002/1097-0134(20010101)42:1<38:AID-PROT50>3.0.CO;2-3
Mészáros B, Erdos G, Dosztányi Z (2018) IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res 46:W329–W337. https://doi.org/10.1093/nar/gky384
Gadhave K, Gehi BR, Kumar P et al (2020) The dark side of Alzheimer’s disease: unstructured biology of proteins from the amyloid cascade signaling pathway. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03414-9
Garg N, Kumar P, Gadhave K, Giri R (2019) The dark proteome of cancer: intrinsic disorderedness and functionality of HIF-1α along with its interacting proteins. Prog Mol Biol Transl Sci 166:371–403. https://doi.org/10.1016/bs.pmbts.2019.05.006
Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins Struct Funct Genet 41:415–427. https://doi.org/10.1002/1097-0134(20001115)41:3<415:AID-PROT130>3.0.CO;2-7
Huang F, Oldfield C, Meng J et al (2012) Subclassifying disordered proteins by the CH-CDF plot method. In: Pacific symposium on Biocomputing, pp 128–139
Malhis N, Wong ETC, Nassar R, Gsponer J (2015) Computational identification of MoRFs in protein sequences using hierarchical application of Bayes rule. PLoS ONE 10:e0141603. https://doi.org/10.1371/journal.pone.0141603
Mészáros B, Simon I, Dosztányi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5:e1000376. https://doi.org/10.1371/journal.pcbi.1000376
Dosztányi Z, Mészáros B, Simon I (2009) ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25:2745–2746. https://doi.org/10.1093/bioinformatics/btp518
Disfani FM, Hsu W-L, Mizianty MJ et al (2012) MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics 28:i75–83. https://doi.org/10.1093/bioinformatics/bts209
Jones DT, Cozzetto D (2015) DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31:857–863. https://doi.org/10.1093/bioinformatics/btu744
Peng Z, Wang C, Uversky VN, Kurgan L (2017) Prediction of disordered RNA, DNA, and protein binding regions using DisoRDPbind. Methods Mol Biol 1484:187–203. https://doi.org/10.1007/978-1-4939-6406-2_14
Kumar M, Gromiha MM, Raghava GPS (2008) Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins 71:189–194. https://doi.org/10.1002/prot.21677
Wu A, Peng Y, Huang B et al (2020) Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. https://doi.org/10.1016/j.chom.2020.02.001
Rajagopalan K, Mooney SM, Parekh N et al (2011) A majority of the cancer/testis antigens are intrinsically disordered proteins. J Cell Biochem 112:3256–3267. https://doi.org/10.1002/jcb.23252
Mishra PM, Uversky VN, Giri R (2018) Molecular recognition features in Zika virus proteome. J Mol Biol 430:2372–2388. https://doi.org/10.1016/j.jmb.2017.10.018
Gypas F, Tsaousis GN, Hamodrakas SJ (2013) mpMoRFsDB: a database of molecular recognition features in membrane proteins. Bioinformatics 29:2517–2518. https://doi.org/10.1093/bioinformatics/btt427
Oldfield CJ, Peng Z, Kurgan L (2020) Disordered RNA-binding region prediction with DisoRDPbind. Methods Mol Biol 2106:225–239. https://doi.org/10.1007/978-1-0716-0231-7_14
Cavanagh D, Davis PJ (1986) Coronavirus IBV: removal of spike glycopolypeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells. J Gen Virol 67(Pt 7):1443–1448. https://doi.org/10.1099/0022-1317-67-7-1443
Graham RL, Baric RS (2010) Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J Virol 84:3134–3146. https://doi.org/10.1128/jvi.01394-09
Belouzard S, Millet JK, Licitra BN, Whittaker GR (2012) Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4:1011–1033
de Haan CAM, te Lintelo E, Li Z et al (2006) Cooperative involvement of the s1 and s2 subunits of the murine coronavirus spike protein in receptor binding and extended host range. J Virol 80:10909–10918. https://doi.org/10.1128/jvi.00950-06
Li F, Li W, Farzan M, Harrison SC (2005) Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309:1864–1868. https://doi.org/10.1126/science.1116480
Broer R, Boson B, Spaan W et al (2006) Important role for the transmembrane domain of severe acute respiratory syndrome coronavirus spike protein during entry. J Virol 80:1302–1310. https://doi.org/10.1128/jvi.80.3.1302-1310.2006
Song W, Gui M, Wang X, Xiang Y (2018) Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 14:e1007236. https://doi.org/10.1371/journal.ppat.1007236
Wrapp D, Wang N, Corbett KS et al (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. https://doi.org/10.1126/science.abb2507
McBride CE, Li J, Machamer CE (2007) The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein. J Virol 81:2418–2428. https://doi.org/10.1128/jvi.02146-06
Ruch TR, Machamer CE (2012) The coronavirus E protein: assembly and beyond. Viruses 4:363–382. https://doi.org/10.3390/v4030363
Ujike M, Taguchi F (2015) Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses 7:1700–1725
DeDiego ML, Alvarez E, Almazan F et al (2007) A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol 81:1701–1713. https://doi.org/10.1128/jvi.01467-06
Torres J, Wang J, Parthasarathy K, Liu DX (2005) The transmembrane oligomers of coronavirus protein E. Biophys J 88:1283–1290. https://doi.org/10.1529/biophysj.104.051730
Li Y, Surya W, Claudine S, Torres J (2014) Structure of a conserved Golgi complex-targeting signal in coronavirus envelope proteins. J Biol Chem 289:12535–12549. https://doi.org/10.1074/jbc.M114.560094
Surya W, Samsó M, Torres J (2013) Structural and functional aspects of viroporins in human respiratory viruses: respiratory syncytial virus and coronaviruses. In: Mahboub BH (ed) Respiratory disease and infection - a new insight. IntechOpen. https://doi.org/10.5772/53957
Teoh KT, Siu YL, Chan WL et al (2010) The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis. Mol Biol Cell 21:3838–3852. https://doi.org/10.1091/mbc.E10-04-0338
Tseng Y-T, Chang C-H, Wang S-M et al (2013) Identifying SARS-CoV membrane protein amino acid residues linked to virus-like particle assembly. PLoS ONE 8:e64013. https://doi.org/10.1371/journal.pone.0064013
Tseng Y-T, Wang S-M, Huang K-J et al (2010) Self-assembly of severe acute respiratory syndrome coronavirus membrane protein. J Biol Chem 285:12862–12872. https://doi.org/10.1074/jbc.M109.030270
Corse E, Machamer CE (2003) The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction. Virology 312:25–34. https://doi.org/10.1016/S0042-6822(03)00175-2
Narayanan K, Chen C-J, Maeda J, Makino S (2003) Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal. J Virol 77:2922–2927. https://doi.org/10.1128/jvi.77.5.2922-2927.2003
Neuman BW, Kiss G, Kunding AH et al (2011) A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol 174:11–22. https://doi.org/10.1016/j.jsb.2010.11.021
Liu J, Sun Y, Qi J et al (2010) The membrane protein of severe acute respiratory syndrome coronavirus acts as a dominant immunogen revealed by a clustering region of novel functionally and structurally defined cytotoxic T-lymphocyte epitopes. J Infect Dis 202:1171–1180. https://doi.org/10.1086/656315
Goh GK-M, Dunker AK, Uversky V (2013) Prediction of intrinsic disorder in MERS-CoV/HCoV-EMC supports a high oral-fecal transmission. PLoS Curr. https://doi.org/10.1371/currents.outbreaks.22254b58675cdebc256dbe3c5aa6498b
Perrier A, Bonnin A, Desmarets L et al (2019) The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal. J Biol Chem 294:14406–14421. https://doi.org/10.1074/jbc.RA119.008964
McBride R, van Zyl M, Fielding BC (2014) The coronavirus nucleocapsid is a multifunctional protein. Viruses 6:2991–3018
Saikatendu KS, Joseph JS, Subramanian V et al (2007) Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. J Virol 81:3913–3921. https://doi.org/10.1128/JVI.02236-06
Chang C-K, Hsu Y-L, Chang Y-H et al (2009) Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein packaging. J Virol 83:2255–2264. https://doi.org/10.1128/jvi.02001-08
Huang Q, Yu L, Petros AM et al (2004) Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry 43:6059–6063. https://doi.org/10.1021/bi036155b
Yu I-M, Oldham ML, Zhang J, Chen J (2006) Crystal structure of the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein dimerization domain reveals evolutionary linkage between corona- and arteriviridae. J Biol Chem 281:17134–17139. https://doi.org/10.1074/jbc.M602107200
He R, Leeson A, Ballantine M et al (2004) Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Res 105:121–125. https://doi.org/10.1016/j.virusres.2004.05.002
Luo H, Chen Q, Chen J et al (2005) The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoprotein A1. FEBS Lett 579:2623–2628. https://doi.org/10.1016/j.febslet.2005.03.080
He R, Dobie F, Ballantine M et al (2004) Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochem Biophys Res Commun 316:476–483. https://doi.org/10.1016/j.bbrc.2004.02.074
Nelson GW, Stohlman SA (1993) Localization of the RNA-binding domain of mouse hepatitis virus nucleocapsid protein. J Gen Virol 74(Pt 9):1975–1979. https://doi.org/10.1099/0022-1317-74-9-1975
Gunasekaran K, Tsai C-J, Nussinov R (2004) Analysis of ordered and disordered protein complexes reveals structural features discriminating between stable and unstable monomers. J Mol Biol 341:1327–1341. https://doi.org/10.1016/j.jmb.2004.07.002
Oldfield CJ, Meng J, Yang JY et al (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14–3-3 with their partners. BMC Genomics 9(Suppl 1):S1. https://doi.org/10.1186/1471-2164-9-S1-S1
Wu Z, Hu G, Yang J et al (2015) In various protein complexes, disordered protomers have large per-residue surface areas and area of protein-, DNA- and RNA-binding interfaces. FEBS Lett 589:2561–2569. https://doi.org/10.1016/j.febslet.2015.08.014
Narayanan K, Huang C, Makino S (2008) SARS coronavirus accessory proteins. Virus Res 133:113–121. https://doi.org/10.1016/j.virusres.2007.10.009
Tan Y-J (2005) The severe acute respiratory syndrome (SARS)-coronavirus 3a protein may function as a modulator of the trafficking properties of the spike protein. Virol J 2:5. https://doi.org/10.1186/1743-422X-2-5
McBride R, Fielding BC (2012) The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis. Viruses 4:2902–2923. https://doi.org/10.3390/v4112902
Yu C-J, Chen Y-C, Hsiao C-H et al (2004) Identification of a novel protein 3a from severe acute respiratory syndrome coronavirus. FEBS Lett 565:111–116. https://doi.org/10.1016/j.febslet.2004.03.086
Yuan X, Li J, Shan Y et al (2005) Subcellular localization and membrane association of SARS-CoV 3a protein. Virus Res 109:191–202. https://doi.org/10.1016/j.virusres.2005.01.001
Tan Y-J, Teng E, Shen S et al (2004) A novel severe acute respiratory syndrome coronavirus protein, U274, is transported to the cell surface and undergoes endocytosis. J Virol 78:6723–6734. https://doi.org/10.1128/jvi.78.13.6723-6734.2004
Lu W, Zheng B-J, Xu K et al (2006) Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc Natl Acad Sci USA 103:12540–12545. https://doi.org/10.1073/pnas.0605402103
Yuan X, Shan Y, Yao Z et al (2006) Mitochondrial location of severe acute respiratory syndrome coronavirus 3b protein. Mol Cells 21:186–191
Yuan X, Yao Z, Shan Y et al (2005) Nucleolar localization of non-structural protein 3b, a protein specifically encoded by the severe acute respiratory syndrome coronavirus. Virus Res 114:70–79. https://doi.org/10.1016/j.virusres.2005.06.001
Varshney B, Lal SK (2011) SARS-CoV accessory protein 3b induces AP-1 transcriptional activity through activation of JNK and ERK pathways. Biochemistry 50:5419–5425. https://doi.org/10.1021/bi200303r
Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M et al (2007) Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81:548–557. https://doi.org/10.1128/jvi.01782-06
Frieman M, Yount B, Heise M et al (2007) Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/golgi membrane. J Virol 81:9812–9824. https://doi.org/10.1128/jvi.01012-07
Netland J, Ferraro D, Pewe L et al (2007) Enhancement of murine coronavirus replication by severe acute respiratory syndrome coronavirus protein 6 requires the N-terminal hydrophobic region but not C-terminal sorting motifs. J Virol 81:11520–11525. https://doi.org/10.1128/jvi.01308-07
Zhou H, Ferraro D, Zhao J et al (2010) The N-terminal region of severe acute respiratory syndrome coronavirus protein 6 induces membrane rearrangement and enhances virus replication. J Virol 84:3542–3551. https://doi.org/10.1128/jvi.02570-09
Fielding BC, Tan Y-J, Shuo S et al (2004) Characterization of a unique group-specific protein (U122) of the severe acute respiratory syndrome coronavirus. J Virol 78:7311–7318. https://doi.org/10.1128/jvi.78.14.7311-7318.2004
Huang C, Ito N, Tseng C-TK, Makino S (2006) Severe acute respiratory syndrome coronavirus 7a accessory protein is a viral structural protein. J Virol 80:7287–7294. https://doi.org/10.1128/jvi.00414-06
Kanzawa N, Nishigaki K, Hayashi T et al (2006) Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-kappaB activation. FEBS Lett 580:6807–6812. https://doi.org/10.1016/j.febslet.2006.11.046
Law HKW, Cheung CY, Ng HY et al (2005) Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood 106:2366–2374. https://doi.org/10.1182/blood-2004-10-4166
Schaecher SR, Mackenzie JM, Pekosz A (2007) The ORF7b protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is expressed in virus-infected cells and incorporated into SARS-CoV particles. J Virol 81:718–731. https://doi.org/10.1128/jvi.01691-06
Kopecky-Bromberg SA, Martinez-Sobrido L, Palese P (2006) 7a protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase. J Virol 80:785–793. https://doi.org/10.1128/jvi.80.2.785-793.2006
Nelson CA, Pekosz A, Lee CA et al (2005) Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein. Structure 13:75–85. https://doi.org/10.1016/j.str.2004.10.010
Hänel K, Stangler T, Stoldt M, Willbold D (2006) Solution structure of the X4 protein coded by the SARS related coronavirus reveals an immunoglobulin like fold and suggests a binding activity to integrin I domains. J Biomed Sci 13:281–293. https://doi.org/10.1007/s11373-005-9043-9
Oostra M, de Haan CAM, Rottier PJM (2007) The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8. J Virol 81:13876–13888. https://doi.org/10.1128/jvi.01631-07
Chinese SARS Molecular Epidemiology Consortium (2004) Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303:1666–1669. https://doi.org/10.1126/science.1092002
Keng C-T, Choi Y-W, Welkers MRA et al (2006) The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells. Virology 354:132–142. https://doi.org/10.1016/j.virol.2006.06.026
Xu K, Zheng B-J, Zeng R et al (2009) Severe acute respiratory syndrome coronavirus accessory protein 9b is a virion-associated protein. Virology 388:279–285. https://doi.org/10.1016/j.virol.2009.03.032
Sharma K, Åkerström S, Sharma AK et al (2011) SARS-CoV 9b protein diffuses into nucleus, undergoes active Crm1 mediated nucleocytoplasmic export and triggers apoptosis when retained in the nucleus. PLoS ONE 6:e19436. https://doi.org/10.1371/journal.pone.0019436
Meier C, Aricescu AR, Assenberg R et al (2006) The crystal structure of ORF-9b, a lipid binding protein from the SARS coronavirus. Structure 14:1157–1165. https://doi.org/10.1016/j.str.2006.05.012
Thiel V, Ivanov KA, Putics Á et al (2003) Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84:2305–2315. https://doi.org/10.1099/vir.0.19424-0
Fan K, Wei P, Feng Q et al (2004) Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J Biol Chem 279:1637–1642. https://doi.org/10.1074/jbc.M310875200
Lokugamage KG, Narayanan K, Huang C, Makino S (2012) Severe acute respiratory syndrome coronavirus protein nsp1 is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation. J Virol 86:13598–13608. https://doi.org/10.1128/jvi.01958-12
Almeida MS, Johnson MA, Herrmann T et al (2007) Novel-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus. J Virol 81:3151–3161. https://doi.org/10.1128/jvi.01939-06
Jauregui AR, Savalia D, Lowry VK et al (2013) Identification of residues of SARS-CoV nsp1 that differentially affect inhibition of gene expression and antiviral signaling. PLoS ONE 8:e62416. https://doi.org/10.1371/journal.pone.0062416
Narayanan K, Ramirez SI, Lokugamage KG, Makino S (2015) Coronavirus nonstructural protein 1: common and distinct functions in the regulation of host and viral gene expression. Virus Res 202:89–100. https://doi.org/10.1016/j.virusres.2014.11.019
Cornillez-Ty CT, Liao L, Yates JR et al (2009) Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J Virol 83:10314–10318. https://doi.org/10.1128/jvi.00842-09
Graham RL, Sims AC, Brockway SM et al (2005) The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J Virol 79:13399–13411. https://doi.org/10.1128/jvi.79.21.13399-13411.2005
Frieman M, Ratia K, Johnston RE et al (2009) Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-B signaling. J Virol 83:6689–6705. https://doi.org/10.1128/jvi.02220-08
Ratia K, Saikatendu KS, Santarsiero BD et al (2006) Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci USA 103:5717–5722. https://doi.org/10.1073/pnas.0510851103
Michalska K (2020) Crystal structures of SARS-CoV-2 ADP-ribose phosphatase (ADRP) from the apo form to ligand complexes. biorxiv. https://doi.org/10.1101/2020.05.14.096081
Serrano P, Johnson MA, Almeida MS et al (2007) Nuclear magnetic resonance structure of the N-terminal domain of nonstructural protein 3 from the severe acute respiratory syndrome coronavirus. J Virol 81:12049–12060. https://doi.org/10.1128/jvi.00969-07
Alvarez E, DeDiego ML, Nieto-Torres JL et al (2010) The envelope protein of severe acute respiratory syndrome coronavirus interacts with the non-structural protein 3 and is ubiquitinated. Virology 402:281–291. https://doi.org/10.1016/j.virol.2010.03.015
Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ (2013) Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. MBio. https://doi.org/10.1128/mBio.00524-13
Hagemeijer MC, Ulasli M, Vonk AM et al (2011) Mobility and interactions of coronavirus nonstructural protein 4. J Virol 85:4572–4577. https://doi.org/10.1128/jvi.00042-11
Sakai Y, Kawachi K, Terada Y et al (2017) Two-amino acids change in the nsp4 of SARS coronavirus abolishes viral replication. Virology 510:165–174. https://doi.org/10.1016/j.virol.2017.07.019
Oostra M, te Lintelo EG, Deijs M et al (2007) Localization and membrane topology of coronavirus nonstructural protein 4: involvement of the early secretory pathway in replication. J Virol 81:12323–12336. https://doi.org/10.1128/jvi.01506-07
Tomar S, Johnston ML, St John SE et al (2015) Ligand-induced dimerization of middle east respiratory syndrome (MERS) coronavirus nsp5 protease (3CLpro): implications for nsp5 regulation and the development of antivirals. J Biol Chem 290:19403–19422. https://doi.org/10.1074/jbc.M115.651463
Sparks JS, Donaldson EF, Lu X et al (2008) A novel mutation in murine hepatitis virus nsp5, the viral 3c-like proteinase, causes temperature-sensitive defects in viral growth and protein processing. J Virol 82:5999–6008. https://doi.org/10.1128/jvi.00203-08
Jin Z, Du X, Xu Y et al (2020) Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature. https://doi.org/10.1038/s41586-020-2223-y
Anand K, Palm GJ, Mesters JR et al (2002) Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J 21:3213–3224. https://doi.org/10.1093/emboj/cdf327
Cottam EM, Whelband MC, Wileman T (2014) Coronavirus NSP6 restricts autophagosome expansion. Autophagy 10:1426–1441. https://doi.org/10.4161/auto.29309
te Velthuis AJW, van den Worm SHE, Snijder EJ (2012) The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res 40:1737–1747. https://doi.org/10.1093/nar/gkr893
Zhai Y, Sun F, Li X et al (2005) Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat Struct Mol Biol 12:980–986. https://doi.org/10.1038/nsmb999
Gao Y, Yan L, Huang Y et al (2020) Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368(80):779–782. https://doi.org/10.1126/science.abb7498
Kirchdoerfer RN, Ward AB (2019) Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun 10:2342. https://doi.org/10.1038/s41467-019-10280-3
Egloff M-P, Ferron F, Campanacci V et al (2004) The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc Natl Acad Sci USA 101:3792–3796. https://doi.org/10.1073/pnas.0307877101
Ponnusamy R, Moll R, Weimar T et al (2008) Variable oligomerization modes in coronavirus non-structural protein 9. J Mol Biol 383:1081–1096. https://doi.org/10.1016/j.jmb.2008.07.071
Miknis ZJ, Donaldson EF, Umland TC et al (2009) Severe acute respiratory syndrome coronavirus nsp9 dimerization is essential for efficient viral growth. J Virol 83:3007–3018. https://doi.org/10.1128/jvi.01505-08
Bouvet M, Imbert I, Subissi L et al (2012) RNA 3’-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc Natl Acad Sci USA 109:9372–9377. https://doi.org/10.1073/pnas.1201130109
Bouvet M, Debarnot C, Imbert I et al (2010) In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog 6:e1000863. https://doi.org/10.1371/journal.ppat.1000863
Ma Y, Wu L, Shaw N et al (2015) Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc Natl Acad Sci USA 112:9436–9441. https://doi.org/10.1073/pnas.1508686112
Ahn D-G, Choi J-K, Taylor DR, Oh J-W (2012) Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. Arch Virol 157:2095–2104. https://doi.org/10.1007/s00705-012-1404-x
Adedeji AO, Marchand B, Te Velthuis AJW et al (2012) Mechanism of nucleic acid unwinding by SARS-CoV helicase. PLoS ONE 7:e36521. https://doi.org/10.1371/journal.pone.0036521
Jia Z, Yan L, Ren Z et al (2019) Delicate structural coordination of the severe acute respiratory syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res 47:6538–6550. https://doi.org/10.1093/nar/gkz409
Minskaia E, Hertzig T, Gorbalenya AE et al (2006) Discovery of an RNA virus 3’->5’ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci USA 103:5108–5113. https://doi.org/10.1073/pnas.0508200103
Ivanov KA, Hertzig T, Rozanov M et al (2004) Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc Natl Acad Sci USA 101:12694–12699. https://doi.org/10.1073/pnas.0403127101
Kim Y, Jedrzejczak R, Maltseva NI et al (2020) Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci. https://doi.org/10.1002/pro.3873
Ricagno S, Egloff M-P, Ulferts R et al (2006) Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family. Proc Natl Acad Sci USA 103:11892–11897. https://doi.org/10.1073/pnas.0601708103
Decroly E, Imbert I, Coutard B et al (2008) Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2’O)-methyltransferase activity. J Virol 82:8071–8084. https://doi.org/10.1128/jvi.00407-08