Evolution equations governed by Lipschitz continuous non-autonomous forms

Czechoslovak Mathematical Journal - Tập 65 - Trang 475-491 - 2015
Ahmed Sani1, Hafida Laasri2
1Department of Mathematics, University Ibn Zohr, Faculty of Sciences, Agadir, Morocco
2Fachbereich C-Mathematik und Naturwissenschaften, University of Wuppertal, Wuppertal, Germany

Tóm tắt

We prove L 2-maximal regularity of the linear non-autonomous evolutionary Cauchy problem $$\dot u(t) + A(t)u(t) = f(t){\text{ for a}}{\text{.e}}{\text{. }}t \in \left[ {0,T} \right],{\text{ }}u(0) = {u_0}$$ , where the operator A(t) arises from a time depending sesquilinear form a(t, ·, ·) on a Hilbert space H with constant domain V. We prove the maximal regularity in H when these forms are time Lipschitz continuous. We proceed by approximating the problem using the frozen coefficient method developed by El-Mennaoui, Keyantuo, Laasri (2011), El-Mennaoui, Laasri (2013), and Laasri (2012). As a consequence, we obtain an invariance criterion for convex and closed sets of H.

Tài liệu tham khảo

W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander: Vector-valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics 96, Birkhäuser, Basel, 2011. W. Arendt, R. Chill: Global existence for quasilinear diffusion equations in isotropic nondivergence form. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 523–539. W. Arendt, D. Dier, H. Laasri, E. M. Ouhabaz: Maximal regularity for evolution equations governed by non-autonomous forms. Adv. Differ. Equ. 19 (2014), 1043–1066. W. Arendt, D. Dier, E. M. Ouhabaz: Invariance of convex sets for non-autonomous evolution equations governed by forms. J. Lond. Math. Soc., II. Ser. 89 (2014), 903–916. C. Bardos: A regularity theorem for parabolic equations. J. Funct. Anal. 7 (1971), 311–322. H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York, 2011. R. Dautray, J.-L. Lions: Analyse mathématique et calcul numérique pour les sciences et les techniques. Volume 8: Évolution: semi-groupe, variationnel. Collection Enseignement, Masson, Paris, 1988. (In French.) O. El-Mennaoui, V. Keyantuo, H. Laasri: Infinitesimal product of semigroups. Ulmer Seminare. Heft 16 (2011), 219–230. B. Haak, O. El Maati: Maximal regularity for non-autonomous evolution equations. Version available at: http://arxiv.org/abs/1402.1136v1. T. Kato: Perturbation Theory for Linear Operators. Classics in Mathematics, Springer, Berlin, 1992. H. Laasri: Probl`emes d’évolution et intégrales produits dans les espaces de Banach. Thèse de Doctorat, Faculté des science, Agadir, 2012, DOI 10.1007/s00208-015-1199-7. (In French.) H. Laasri, O. El-Mennaoui: Stability for non-autonomous linear evolution equations with L p-maximal regularity. Czech. Math. J. 63 (2013), 887–908. J. L. Lions: Équations différentielles opérationnelles et problèmes aux limites. Die Grundlehren der mathematischen Wissenschaften 111, Springer, Berlin, 1961. (In French.) E. M. Ouhabaz: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series 31, Princeton University Press, Princeton, 2005. E. M. Ouhabaz: Invariance of closed convex sets and domination criteria for semigroups. Potential Anal. 5 (1996), 611–625. E. M. Ouhabaz, C. Spina: Maximal regularity for non-autonomous Schrödinger type equations. J. Differ. Equations 248 (2010), 1668–1683. R. E. Showalter: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs 49, AMS, Providence, 1997. A. Slavík: Product Integration, Its History and Applications. Dějiny Matematiky/History of Mathematics 29; Nečas Center for Mathematical Modeling Lecture Notes 1, Matfyzpress, Praha, 2007. H. Tanabe: Equations of Evolution. Monographs and Studies in Mathematics 6, Pitman, London, 1979. S. Thomaschewski: Form Methods for Autonomous and Non-Autonomous Cauchy Problems. PhD Thesis, Universität Ulm, 2003.