Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms

Journal of Atmospheric and Oceanic Technology - Tập 26 Số 11 - Trang 2310-2323 - 2009
David M. Winker1, Mark Vaughan1, Ali Omar1, Yongxiang Hu1, Kathleen A. Powell1, Zhaoyan Liu2, William H. Hunt3, Stuart A. Young4
1NASA Langley Research Center, Hampton, Virginia
2National Institute of Aerospace, Hampton, Virginia
3Science Systems and Applications, Inc., Hampton, Virginia
4CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

Tóm tắt

Abstract The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is a two-wavelength polarization lidar that performs global profiling of aerosols and clouds in the troposphere and lower stratosphere. CALIOP is the primary instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, which has flown in formation with the NASA A-train constellation of satellites since May 2006. The global, multiyear dataset obtained from CALIOP provides a new view of the earth’s atmosphere and will lead to an improved understanding of the role of aerosols and clouds in the climate system. A suite of algorithms has been developed to identify aerosol and cloud layers and to retrieve a variety of optical and microphysical properties. CALIOP represents a significant advance over previous space lidars, and the algorithms that have been developed have many innovative aspects to take advantage of its capabilities. This paper provides a brief overview of the CALIPSO mission, the CALIOP instrument and data products, and an overview of the algorithms used to produce these data products.

Từ khóa


Tài liệu tham khảo

Abshire, 2005, Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On-orbit measurement performance., Geophys. Res. Lett., 32, L21S02, 10.1029/2005GL024028

Ackermann, 1998, The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study., J. Atmos. Oceanic Technol., 15, 1043, 10.1175/1520-0426(1998)015<1043:TETBRO>2.0.CO;2

Anderson, 2000, In situ measurements of the aerosol extinction-to-backscatter ratio at a polluted continental site., J. Geophys. Res., 105, 26907, 10.1029/2000JD900400

Breon, 2004, Horizontally oriented plates in clouds., J. Atmos. Sci., 61, 2888, 10.1175/JAS-3309.1

Dubovik, 2000, A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements., J. Geophys. Res., 105, 20673, 10.1029/2000JD900282

Hahn, 1990, Atlas of simultaneous occurrence of different cloud types over the ocean.

Hu, 2007, Depolarization ratio–effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination., Geophys. Res. Lett, 34, L11812, 10.1029/2007GL029584

Hu, 2009, CALIPSO/CALIOP cloud phase discrimination algorithm., J. Atmos. Oceanic Technol., 26, 2293, 10.1175/2009JTECHA1280.1

Hunt, 2009, CALIPSO lidar description and performance assessment., J. Atmos. Oceanic Technol., 26, 1214, 10.1175/2009JTECHA1223.1

Kahn, 2001, Sensitivity of multiangle imaging to natural mixtures of aerosols over ocean., J. Geophys. Res., 106, 18219, 10.1029/2000JD900497

Kalashnikova, 2002, Importance of shapes and compositions of wind-blown dust particles for remote sensing at solar wavelengths., Geophys. Res. Lett., 29, 1398, 10.1029/2002GL014947

Kaufman, 1997, Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer., J. Geophys. Res., 102, 17051, 10.1029/96JD03988

King, 1999, Remote sensing of tropospheric aerosols from space: Past, present, and future., Bull. Amer. Meteor. Soc., 80, 2229, 10.1175/1520-0477(1999)080<2229:RSOTAF>2.0.CO;2

Liu, 2004, Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data., J. Geophys. Res., 109, D15202, 10.1029/2004JD004732

Liu, 2009, The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance., J. Atmos. Oceanic Technol., 26, 1198, 10.1175/2009JTECHA1229.1

McGill, 2002, Cloud physics lidar: Instrument description and initial measurement results., Appl. Opt., 41, 3725, 10.1364/AO.41.003725

McGill, 2007, Airborne validation of spatial properties measured by the CALIPSO lidar., J. Geophys. Res., 112, D20201, 10.1029/2007JD008768

Mishchenko, 2007, Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory mission., Bull. Amer. Meteor. Soc., 88, 677, 10.1175/BAMS-88-5-677

Omar, 2005, Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements., J. Geophys. Res., 110, D10S14, 10.1029/2004JD004874

Omar, 2009, The CALIPSO automated aerosol classification and lidar ratio selection algorithm., J. Atmos. Oceanic Technol., 26, 1994, 10.1175/2009JTECHA1231.1

Powell, 2009, CALIPSO lidar calibration algorithms. Part I: Nighttime 532-nm parallel channel and 532-nm perpendicular channel., J. Atmos. Oceanic Technol., 26, 2015, 10.1175/2009JTECHA1242.1

Russell, 1979, Methodology for error analysis and simulation of lidar aerosol measurements., Appl. Opt., 18, 3783, 10.1364/AO.18.003783

Sassen, 1991, The polarization lidar technique for cloud research: A review and current assessment., Bull. Amer. Meteor. Soc., 72, 1848, 10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2

Sassen, 2001, A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical properties derived from lidar depolarization., J. Atmos. Sci., 58, 2103, 10.1175/1520-0469(2001)058<2103:AMCCCF>2.0.CO;2

Sassen, 2001, A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative properties., J. Atmos. Sci., 58, 2113, 10.1175/1520-0469(2001)058<2113:AMCCCF>2.0.CO;2

Solomon, 2007, Technical summary.

Stephens, 2002, The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation., Bull. Amer. Meteor. Soc., 83, 1771, 10.1175/BAMS-83-12-1771

Tanré, 1997, Remote sensing of aerosol properties over oceans using the MODIS/ESO spectral radiances., J. Geophys. Res., 102, 16971, 10.1029/96JD03437

Thomason, 2007, CALIPSO observations of stratospheric aerosols: A preliminary assessment., Atmos. Chem. Phys., 7, 5283, 10.5194/acp-7-5283-2007

van de Hulst, 1957, Light Scattering by Small Particles., 10.1063/1.3060205

Vaughan, 2004, Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products., 10.1117/12.572024

Vaughan, 2008, Backscatter color ratios of cirrus clouds measured by the Cloud Physics Lidar.

Vaughan, 2009, Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements., J. Atmos. Oceanic Technol., 26, 2034, 10.1175/2009JTECHA1228.1

Winker, 2003, Accounting for multiple scattering in retrievals from space lidar., 10.1117/12.512352

Winker, 1996, An overview of LITE: NASA’s Lidar In-space Technology Experiment., Proc. IEEE, 84, 164, 10.1109/5.482227

Winker, 2003, The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds., 10.1117/12.466539

Winker, 2007, Initial performance assessment of CALIOP., Geophys. Res. Lett., 34, L19803, 10.1029/2007GL030135

Young, 1995, Analysis of lidar backscatter profiles in optically thin clouds., Appl. Opt., 34, 7019, 10.1364/AO.34.007019

Young, 2009, The retrieval of profiles of particulate extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) lidar data: Algorithm description., J. Atmos. Oceanic Technol., 26, 1105, 10.1175/2008JTECHA1221.1