Subtle Details in Crystal Structure of SHS Products by DFT Calculations

S. V. Konovalikhin1, I. I. Chuev1, D. Yu. Kovalev1, S. A. Guda2, V. I. Ponomarev1
1Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences, Chernogolovka, Russia
2International Research Institute for Smart Materials, Southern Federal University, Rostov-on-Don, Russia

Tóm tắt

Total energy ab-initio calculations for some SHS products were performed by DFT method using VASP program package. The results of calculations along with XRD results and crystallographic modeling were used to explain specific features of the composition/structure of selected SHS products.

Tài liệu tham khảo

Konovalikhin, S.V. and Ponomarev, V.I., Carbon in boron carbide: The crystal structure of B11.4C3.6, Russ. J. Inorg. Chem., 2009, vol. 54, no. 2, pp. 197–203. https://doi.org/10.1134/S0036023609020053 Kovalev, I.D., Ponomarev, V.I., Vershinnikov, V.I., and Konovalikhin, S.V., SHS of single crystals in the B–C–Mg system: Crystal structure of new modification of B25C4Mg1.42 = [B12]2[CBC][C2]Mg1.42, Int. J. Self-Propag. High-Temp. Synth., 2013, vol. 22, no. 3, pp. 163–165. https://doi.org/10.3103/S1061386213030047 Ponomarev, V.I., Konovalikhin, S.V., Kovalev, I.D., Vershinnikov, V.I., and Borovinskaya, I.P., Synthesis and crystal structure of [B12]2[CBC][C2]Mg1.42, a new modification of B25C4Mg1.42, Mendeleev Commun., 2014, vol. 24, pp. 15–16. doi . 12.004https://doi.org/10.1016/j.mencom.2013 Kovalev, I.D., Ponomarev, V.I., Konovalikhin, S.V., Kovalev, D.Yu., and Vershinnikov, V.I., SHS of boron carbide: Influence of combustion temperature, Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 1, pp. 33–37. https://doi.org/10.3103/S1061386215010045 Yukhvid, V.I., SHS metallurgy: Fundamental and applied research, Adv. Mater. Technol., 2016, no. 4, pp. 22–34. Shchukin, A.S., Konovalikhin, S.V., Kovalev, D.Yu., and Sytschev, A.E., Composition and crystalline structure of ternary phases in the Ta–Ni–Al system, Russ. J. Non-Ferrous Met., 2020, vol. 61, no. 3, pp. 303–308.https://doi.org/10.3103/S1067821220030141 Rogachev, A.S., Vadchenko, S.G., Shchukin, A.S., Kovalev, I.D., and Aronin, A.S., Self-propagating crystallization waves in the TiCu amorphous alloy, JETP Lett., 2016, vol. 104, no. 10, pp. 726–729. https://doi.org/10.1134/S0021364016220124 Kresse, G. and Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, vol. 54, no. 16, 11169. https://doi.org/10.1103/PhysRevB.54.11169 Kresse, G. and Furtmuller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 1996, vol. 6, no. 1. pp. 15–50.https://doi.org/10.1016/0927-0256(96)00008-0 Grimme, S., Antony, J., Ehrlich, S., and Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H–Pu, J. Chem. Phys., 2010, vol. 132, 154104. https://doi.org/10.1063/1.3382344 Grimme, S., Ehrlich, S., and Goerigk, L., Effect of the damping function in dispersion corrected, J. Comput. Chem., 2011, vol. 32, pp. 1456–1465. doi.org/https://doi.org/10.1002/jcc.21759 Konovalikhin, S.V., Chuev, I.I., Guda, S.A., and Kovalev, D.Yu., Formation enthalpy for TiCu as estimated in terms of density functional theory, Fiz. Met. Metalloved., 2020, V. 121, no. 12 (Accepted for press). Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P.A., Mercury CSD-2.0: New features for the visualization and investigation of crystal structures, J. Appl. Crystallogr., 2008, vol. 41, pp. 466–470. .https://doi.org/10.1107/S0021889807067908 Safaraliev, G.K., Tverdye rastvory na osnove karbida kremniya (Solid Solutions Based on Silicon Carbide), Moscow: Fizmatlit, 2011, p. 44. Ponomarev, V.I., Kovalev, I.D., Konovalikhin, S.V., and Vershinnikov, V.I., Ordering of carbon atoms in boron carbide structure, Crystallogr. Rep., 2013, vol. 58, no. 3, pp. 422–426. https://doi.org/10.1134/S1063774513030188 Konovalikhin, S.V., Ponomarev, V.I., Kovalev, D.Yu, and Guda, S.A., Boron carbide secrets, Russ. J. Gen. Chem., 2019, vol. 89, no. 10, pp. 2069–2074. https://doi.org/10.1134/S107036321907013X Gosset, D. and Colin, M., Boron carbides of various compositions: An improved method for X-rays characterization, J. Nucl. Mater., 1991, vol. 183, no. 3, pp. 161–173. https://doi.org/10.1016/0022-3115(91)90484-O Kwei, G.H. and Morozin, B., Structures of the boron-rich boron carbides from neutron powder diffraction: Implications for the nature of the inter-icosahedral chains, J. Phys. Chem. B, 1996, vol. 100, no. 19, pp. 8031–8039. doi.org/https://doi.org/10.1021/jp953235j Domnich, V., Reynaud, S., Haber, R.A., and Chhowalla, M., Boron carbide: Structure, properties, and stability under stress, J. Am. Ceram. Soc., 2011, vol. 94, no. 11, pp. 3605–3628. https://doi.org/10.1111/j.1551-2916.2011.04865.x Werheit, H., Boron carbide: Consistency of components, lattice parameters, fine structure and chemical composition makes the complex structure reasonable, Solid State Sci., 2016, vol. 60, pp. 45–54. https://doi.org/10.1016/j.solidstatesciences.2016.08.006 Kislyi, P.S., Kizenkova, M.A., Bodnaruk, N.I., and Grabchuk, B.L., Karbid bora (Boron Carbide), Kiev: Naukova Dumka, 1988, pp. 37–41. Levashov, E.A., Rogachev, A.S., Kurbatkina, V.V., Maksimov, Yu.M., and Yukhvid, V.I., Perspektivnye SVS materialy i tekhnologii (Promising SHS Materials and Processes), Moscow: Izd. MISiS, 2011, p. 25. Moskovskikh, D.O., Paramonov, K.A., Nepapushev, A.A., Shkodich, N.F., and Mukasyan, A.S., Bulk boron carbide nanostructured ceramics by reactive spark plasma sintering, Ceram. Int., 2017, vol. 43, no. 11, pp. 8190–8194.https://doi.org/10.1016/j.ceramint.2017.03.145 Kakazey, M., Vlasova, M., Gonzalez-Rodriguez, J.G., Dominguez-Patino, M., and Leder, R., EPR-characterization of carbon inclusions in boron carbide, J. Am. Ceram. Soc., 2004, vol. 87, no. 7, pp. 1336–1338. https://doi.org/10.1111/j.1151-2916.2004.tb07731.x Konovalikhin, S.V., Kovalev, D.Yu., and Ponomarev, V.I., Determination of the thermal expansion coefficient of boron carbide B13C2, High Temp., 2018, vol. 56, no. 5, pp. 668–672. https://doi.org/10.1134/S0018151X18050140 Ponomarev, V.I., Kovalev, I.D., Konovalikhin, S.V., Chuev, I.I., Vershinnikov, V.I., and Kovalev, D.Yu., High temperature x-ray powder diffraction study of boron carbide crystals of different composition, J. Solid State Commun. (submitted). Konovalikhin, S.V. and Ponomarev, V.I., Is linear group X–Y–Z in boron carbide the weakest link in the structure?, Russ. J. Phys. Chem. A, 2015, vol. 89, no. 10, pp. 1850–1853. https://doi.org/10.1134/S0036024415100155 Rasim, K., Ramlau, R., Leithe-Jasper, A., Mori, T., Burkhardt, U., Borrmann, H., Schnelle, W., Carbogno, C., Scheffler, M., and Grin, Yu., Local atomic arrangements and band structure of boron carbide, Angew. Chem. Int. Ed., 2018, vol. 57, pp. 6130–6135. https://doi.org/10.1002/anie.201800804 Zhang, S., Lu, W., Wang, Ch., Shen, Q., and Zhang, L., Investigation of planar defects in pulsed electric current sintered B13C2 boron carbide ceramic, Ceram. Int., 2012, vol. 38, pp. 817–819. https://doi.org/10.1016/j.ceramint.2011.07.040 Khomenko, N.Yu., Konovalikhin, S.V., Chuev, I.I., Guda, S.A., Silyakov, S.L., and Kovalev, D.Yu., X-Ray diffraction study of a new phase in the Ni–W–C system, Inorg. Mater., 2020, vol. 56, no. 6, pp. 572–576. https://doi.org/10.1134/S0020168520060072 Schonenberg, M., The structure of the Co3W9C4 phase, Acta Metall., 1954, vol. 2, no. 6, pp. 837–839. https://doi.org/10.1016/0001-6160(54)90037-1 Harsta, A., Johansson, T., Rundqvist, S., and Thomas, J.O., A neutron powder diffraction study of the kappa-phase in the Co–W–C system, Acta Chem. Scand., Ser. A, 1977, vol. 31, no. 4, pp. 260–264. https://doi.org/10.3891/acta.chem.scand.31a-0260 Kripyakevich, P.I., Gladyshevskii, E.I., and Pylaeva, E.N., E.H., W6Fe2-type compounds in Ta–Ni and Nb–Ni systems, Kristallografiya, 1962, vol. 7, no. 2, pp. 212–216. Yurko, G.A., Barton, J.W., and Parr, J.G., The crystal structure of Ti2Ni, Acta Crystallogr., 1959, vol. 12, no. 11, pp. 909–911. https://doi.org/10.1107/S0365110X59002559 Boulineau, A., Joubert, J.M., and Cerny, R., Structural characterization of the Ta-rich part of the Ta–Al system, J. Solid State Chem., 2006, vol. 179, no. 11, pp. 3385–3393. https://doi.org/10.1016/jssc.2006.07.001 Batsanov, S.S., Strukturnaya khimiya: Fakty i zavisimosti (Structural Chemistry: Book of Facts), Moscow: Dialog-MGU, 2000.