On the choice of the best imputation methods for missing values considering three groups of classification methods

Knowledge and Information Systems - Tập 32 Số 1 - Trang 77-108 - 2012
Julián Luengo1, Salvador García2, Francisco Herrera1
1Department of Computer Science and Artificial Intelligence, CITIC-University of Granada, 18071, Granada, Spain
2Dept. of Computer Science, University of Jaén, 23071 Jaén, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acuna E, Rodriguez C (2004) Classification, clustering and data mining applications. Springer, Berlin, pp 639–648

Alcalá-fdez J, Sánchez L, García S, Jesus MJD, Ventura S, Garrell JM, Otero J, Bacardit J, Rivas VM, Fernández JC, Herrera F (2009) Keel: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput 13(3): 307–318

Asuncion A, Newman D (2007) UCI machine learning repository. http://archive.ics.uci.edu/ml/

Atkeson CG, Moore AW, Schaal S (1997) Locally weighted learning. Artif Intell Rev 11: 11–73

Barnard J, Meng X (1999) Applications of multiple imputation in medical studies: From aids to nhanes. Stat Methods Med Res 8(1): 17–36

Batista G, Monard M (2003) An analysis of four missing data treatment methods for supervised learning. Appl Artif Intell 17(5): 519–533

Bezdek J, Kuncheva L (2001) Nearest prototype classifier designs: an experimental study. Int J Intell Syst 16(12): 1445–1473

Broomhead D, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 11: 321–355

Clark P, Niblett T (1989) The cn2 induction algorithm. Mach Learn J 3(4): 261–283

Cohen W (1995) Fast effective rule induction. In: Machine learning: proceedings of the twelfth international conference, pp 1–10

Cohen W, Singer Y (1999) A simple and fast and and effective rule learner. In: Proceedings of the sixteenth national conference on artificial intelligence, pp 335–342

Cover TM, Thomas JA (1991) Elements of information theory, 2nd edn. Wiley, NY

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7: 1–30

Ding Y, Simonoff JS (2010) An investigation of missing data methods for classification trees applied to binary response data. J Mach Learn Res 11: 131–170

Domingos P, Pazzani M (1997) On the optimality of the simple bayesian classifier under zero-one loss. Mach Learn 29: 103–137

Ennett CM, Frize M, Walker CR (2001) Influence of missing values on artificial neural network performance. Stud Health Technol Inform 84: 449–453

Fan R-E, Chen P-H, Lin C-J (2005) Working set selection using second order information for training support vector machines. J Mach Learn Res 6: 1889–1918

Farhangfar A, Kurgan LA, Pedrycz W (2007) A novel framework for imputation of missing values in databases. IEEE Trans Syst Man Cybern Part A 37(5): 692–709

Farhangfar A, Kurgan L, Dy J (2008) Impact of imputation of missing values on classification error for discrete data. Pattern Recognit 41(12): 3692–3705

Fayyad U, Irani K (1993) Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of 13th international joint conference on uncertainly in artificial intelligence (IJCAI93), pp. 1022–1029

Feng H, Guoshun C, Cheng Y, Yang B, Chen Y (2005) A svm regression based approach to filling in missing values. In: Khosla R, Howlett RJ, Jain LC (eds) ‘KES (3)’, vol 3683 of lecture notes in computer science. Springer, Berlin, pp 581–587

Frank E, Witten I (1998) Generating accurate rule sets without global optimization. In: Proceedings of the fifteenth international conference on machine learning, pp 144–151

García-Laencina P, Sancho-Gómez J, Figueiras-Vidal A (2009) Pattern classification with missing data: a review. Neural Comput Appl. 9(1): 1–12

García S, Herrera F (2008) An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J Mach Learn Res 9: 2677–2694

Gheyas IA, Smith LS (2010) A neural network-based framework for the reconstruction of incomplete data sets. Neurocomputing In Press, Corrected Proof

Grzymala-Busse J, Goodwin L, Grzymala-Busse W, Zheng X (2005) Handling missing attribute values in preterm birth data sets. In: Proceedings of 10th international conference of rough sets and fuzzy sets and data mining and granular computing(RSFDGrC), pp 342–351

Grzymala-Busse JW, Hu M (2000) A comparison of several approaches to missing attribute values in data mining. In: Ziarko W, Yao YY (eds) Rough sets and current trends in computing, vol 2005 of lecture notes in computer science, Springer, pp 378–385

Hruschka ER Jr., Hruschka ER, Ebecken NF (2007) Bayesian networks for imputation in classification problems. J Intell Inf Syst 29(3): 231–252

Kim H, Golub GH, Park H (2005) Missing value estimation for dna microarray gene expression data: local least squares imputation. Bioinformatics 21(2): 187–198

Kwak N, Choi C-H (2002) Input feature selection by mutual information based on parzen window. IEEE Trans Pattern Anal Mach Intell 24(12): 1667–1671

Kwak N, Choi C-H (2002) Input feature selection for classification problems. IEEE Trans Neural Netw 13(1): 143–159

Cessie S le, van Houwelingen J (1992) Ridge estimators in logistic regression. Appl Stat 41(1): 191–201

Li D, Deogun J, Spaulding W, Shuart B (2004) Towards missing data imputation: a study of fuzzy k-means clustering method. In: Proceedings of 4th international conference of rough sets and current trends in computing (RSCTC), pp 573–579

Little RJA, Rubin DB (1987) Statistical analysis with missing data, wiley series in probability and statistics, 1st edn. Wiley, New York

Luengo J, García S, Herrera F (2010) A study on the use of imputation methods for experimentation with Radial Basis Function Network classifiers handling missing attribute values: the good synergy between RBFNs and EventCovering method. Neural Netw 23(3): 406–418

Matsubara ET, Prati RC, Batista GEAPA, Monard MC (2008) Missing value imputation using a semi-supervised rank aggregation approach. In: Zaverucha G, da Costa ACPL (eds) ‘SBIA’, vol 5249 of lecture notes in computer science. Springer, Berlin, pp 217–226

McLachlan G (2004) Discriminant analysis and statistical pattern recognition. Wiley, NY

Merlin P, Sorjamaa A, Maillet B, Lendasse A (2010) X-SOM and L-SOM: a double classification approach for missing value imputation. Neurocomputing 73(7–9): 1103–1108

Michalksi R, Mozetic I, Lavrac N (1986) The multipurpose incremental learning system aq15 and its testing application to three medical domains. In: Proceedings of 5th international conference on artificial intelligence (AAAI), pp 1041–1045

Moller F (1990) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6: 525–533

Nogueira BM, Santos TRA, Zárate LE (2007) Comparison of classifiers efficiency on missing values recovering: application in a marketing database with massive missing data. In: ‘CIDM’, IEEE, pp 66–72

Oba S, aki Sato M, Takemasa I, Monden M, ichi Matsubara K, Ishii S (2003) A bayesian missing value estimation method for gene expression profile data. Bioinformatics 19(16): 2088–2096

Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8): 1226–1238

Pham DT, Afify AA (2005) Rules-6: a simple rule induction algorithm for supporting decision making. In: Industrial electronics society, 2005. IECON 2005. 31st annual conference of IEEE, pp 2184–2189

Pham DT, Afify AA (2006) Sri: A scalable rule induction algorithm. Proc Inst Mech Eng Part C J Mech Eng Sci 220:537–552

Plat J (1991) A resource allocating network for function interpolation. Neural Comput 3(2): 213–225

Platt JC (1999) Fast training of support vector machines using sequential minimal optimization. In: Advances in kernel methods: support vector learning. MIT Press, Cambridge, pp 185–208

Pyle D (1999) Data preparation for data mining. Morgan Kaufmann, Los Altos

Qin B, Xia Y, Prabhakar S (2010) Rule induction for uncertain data. Knowl Inf Syst, doi: 10.1007/s10115-010-0335-7 , pp 1–28 (in press)

Quinlan J (1993) C4.5:programs for machine learning. Morgan Kauffman, Los Altos

Reddy C, Park J-H (2010) Multi-resolution boosting for classification and regression problems. Knowl Inf Syst, doi: 10.1007/s10115-010-0358-0 , pp 1–22, (in press)

Saar-Tsechansky M, Provost F (2007) Handling missing values when applying classification models. J Learn Res 8: 1623–1657

Safarinejadian B, Menhaj M, Karrari M (2010) A distributed EM algorithm to estimate the parameters of a finite mixture of components. Knowl Inf Syst 23(3): 267–292

Schafer JL (1997) Analysis of incomplete multivariate data. Chapman & Hall, London

Schneider T (2001) Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J Clim 14: 853–871

Song Q, Shepperd M, Chen X, Liu J (2008) Can k-NN imputation improve the performance of C4.5 with small software project data sets? A comparative evaluation. J Syst Softw 81(12): 2361–2370

Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB (2001) Missing value estimation methods for dna microarrays. Bioinformatics 17(6): 520–525

Twala B (2009) An empirical comparison of techniques for handling incomplete data using decision trees. Appl Artif Intell 23: 373–405

Unnebrink K, Windeler J (n.d.)

Wang H, Wang S (2010) Mining incomplete survey data through classification. Knowl Inf Syst 24(2): 221–233

Wilson D (1972) Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans Syst Man Cybern 2(3): 408–421

Wong AKC, Chiu DKY (1987) Synthesizing statistical knowledge from incomplete mixed-mode data. IEEE Trans Pattern Anal Mach Intell 9(6): 796–805

Wu X, Urpani D (1999) Induction by attribute elimination. IEEE Trans Knowl Data Eng 11(5): 805–812

Zheng Z, Webb GI (2000) Lazy learning of bayesian rules. Mach Learn 41(1): 53–84