So sánh choline-PET/CT, MRI, SPECT và xạ hình xương trong chẩn đoán di căn xương ở bệnh nhân ung thư tuyến tiền liệt: một phân tích tổng hợp

Skeletal Radiology - Tập 43 - Trang 1503-1513 - 2014
Guohua Shen1, Houfu Deng1, Shuang Hu1, Zhiyun Jia1
1Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, People’s Republic of China

Tóm tắt

Dữ liệu đã công bố về chẩn đoán di căn xương của ung thư tuyến tiền liệt còn bất đồng và không đồng nhất. Chúng tôi thực hiện một phân tích tổng hợp toàn diện để so sánh hiệu suất chẩn đoán của choline-PET/CT, MRI, SPECT xương và xạ hình xương (BS) trong việc phát hiện di căn xương ở bệnh nhân ung thư tuyến tiền liệt. Độ nhạy, độ đặc hiệu và tỷ lệ chẩn đoán (DOR) được tính toán trên cơ sở từng bệnh nhân và từng tổn thương. Đường cong nhận diện tổng hợp (SROC) cũng được vẽ để lấy diện tích dưới đường cong (AUC) và giá trị Q*. Mười sáu bài báo với 27 nghiên cứu đã được đưa vào phân tích. Trên cơ sở từng bệnh nhân, độ nhạy tổng hợp khi sử dụng choline PET/CT, MRI và BS lần lượt là 0.91 [Khoảng tin cậy (CI) 95%: 0.83–0.96], 0.97 (CI 95%: 0.91–0.99), 0.79 (CI 95%: 0.73–0.83). Độ đặc hiệu tổng hợp trong phát hiện di căn xương khi sử dụng choline PET/CT, MRI và BS lần lượt là 0.99 (CI 95%: 0.93–1.00), 0.95 (CI 95%: 0.90–0.97), và 0.82 (CI 95%: 0.78–0.85). Trên cơ sở từng tổn thương, độ nhạy tổng hợp của choline PET/CT, SPECT xương, và BS lần lượt là 0.84 (CI 95%: 0.81–0.87), 0.90 (CI 95%: 0.86–0.93), 0.59 (CI 95%: 0.55–0.63). Độ đặc hiệu tổng hợp là 0.93 (CI 95%: 0.89–0.96) cho choline PET/CT, 0.85 (CI 95%: 0.80–0.90) cho SPECT xương, và 0.75 (CI 95%: 0.71–0.79) cho BS. Phân tích tổng hợp này cho thấy MRI tốt hơn choline PET/CT và BS trên cơ sở từng bệnh nhân. Trong phân tích từng tổn thương, choline PET/CT với DOR và Q* cao nhất cho thấy hiệu quả hơn so với SPECT xương và BS trong việc phát hiện di căn xương từ ung thư tuyến tiền liệt.

Từ khóa

#ung thư tuyến tiền liệt #di căn xương #chẩn đoán #choline-PET/CT #MRI #SPECT #xạ hình xương

Tài liệu tham khảo

Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29. Beheshti M, Vali R, Waldenberger P, et al. The use of 18F-choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol. 2009;11:446–54. Giovanella L, Castellani M, Suriano S, et al. Multi-field-of-view SPECT is superior to whole-body scanning for assessing metastatic bone disease in patients with prostate cancer. Tumori. 2011;97:629–33. Zerbib M, Zelefsky MJ, Higano CS, Carroll PR. Conventional treatments of localized prostate cancer. Urology. 2008;72:S25–35. Berry WR. The evolving role of chemotherapy in androgen-independent (hormone-refractory) prostate cancer. Urology. 2005;65:2–7. Love C, Din AS, Tomas MB, Kalapparambath TP, Palestro CJ. Radionuclide bone imaging: an illustrative review. Radiographics. 2003;23:341–58. Beheshti M, Pirich C, Langsteger W. Conventional 99mTc-based bone scan versus fluoride positron emission tomography combined with computed tomography in the assessment of bone metastases in prostate cancer patients. Imaging Decisions MRI. 2009;13:88–96. Kosuda S, Kaji T, Yokoyama H, et al. Does bone SPECT actually have lower sensitivity for detecting vertebral metastasis than MRI? J Nucl Med. 1996;37:975–8. Nozaki T, Yasuda K, Akashi T, Fuse H. Usefulness of single-photon emission computed tomography imaging in the detection of lumbar vertebral metastases from prostate cancer. Int J Urol. 2008;15:516–9. Ghanem N, Uhl M, Brink I, et al. Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone. Eur J Radiol. 2005;55:41–55. Lecouvet FE, Geukens D, Stainier A, et al. Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol. 2007;25:3281–7. Effert PJ, Bares R, Handt S, Wolff JM, Bull U, Jakse G. Metabolic imaging of untreated prostate cancer by positron emission tomography with sup 18 fluorine-labeled deoxyglucose. J Urol. 1996;155:994–8. Richter JA, Rodríguez M, Rioja J, et al. Dual tracer 11C-choline and FDG-PET in the diagnosis of biochemical prostate cancer relapse after radical treatment. Mol Imaging Biol. 2010;12:210–7. Evangelista L, Guttilla A, Zattoni F, Muzzio PC, Zattoni F. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate-to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol. 2012;63:1040–8. Berlin JA. Does blinding of readers affect the results of meta-analyses? Lancet. 1997;350:185–6. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003;3:25. Whiting PF, Weswood ME, Rutjes AW, Reitsma JB, Bossuyt PN, Kleijnen J. Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol. 2006;6:9. Wu Y, Li P, Zhang H, et al. Diagnostic value of fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography for the detection of metastases in non–small–cell lung cancer patients. Int J Cancer. 2013;132:E37–47. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-Fluoride PET/CT. J Nucl Med. 2006;47:287–97. Fuccio C, Castellucci P, Schiavina R, et al. Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med. 2010;24:485–92. Lecouvet FE, El Mouedden J, Collette L, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace 99mTc bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. 2012;62:68–75. McCarthy M, Siew T, Campbell A, et al. 18F-Fluoromethylcholine (FCH) PET imaging in patients with castration-resistant prostate cancer: prospective comparison with standard imaging. Eur J Nucl Med Mol Imaging. 2011;38:14–22. Mosavi F, Johansson S, Sandberg DT, Turesson I, Sorensen J, Ahlstrom H. Whole-body diffusion-weighted MRI compared with 18F-NaF PET/CT for detection of bone metastases in patients with high-risk prostate carcinoma. AJR Am J Roentgenol. 2012;199:1114–20. Nozaki T, Yasuda K, Akashi T, Fuse H. Usefulness of single-photon emission computed tomography imaging in the detection of lumbar vertebral metastases from prostate cancer. Int J Urol. 2008;15:516–9. Picchio M, Fallanca F, Spinapolice E, et al. Comparison of 11C-choline PET/CT and bone scintigraphy in the detection of bone metastasis in patients with biochemical failure after primary treatment for prostate cancer. Eur J Nucl Med Mol Imaging. 2010;37:S269. Picchio M, Spinapolice E, Fallanca F, et al. 11C-choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur J Nucl Med Mol Imaging. 2012;39:13–26. Poulsen MH, Petersen H, Hoilund-Carlsen PF, et al. Detection of bone metastases from prostate cancer: a prospective study of 99mTc-MDP bone scintigraphy, 18F-fluorocholine PET/CT, 18F-fluoride PET/CT compared with MRI. Eur Urol Suppl. 2012;11:e892. Takesh M, Zechmann C, Haufe S, Afshar A, Haberkorn U. Diagnostic role of 18F-fluoroethylcholine-PET/CT compared with bone-scan in evaluating the prostate cancer patients referring with biochemical recurrence. Eur J Nucl Med Mol Imaging. 2011;38:S138. Venkitaraman R, Cook GJ, Dearnaley DP, et al. Does magnetic resonance imaging of the spine have a role in the staging of prostate cancer? Clin Oncol. 2009;21:39–42. Venkitaraman R, Cook GJ, Dearnaley DP, et al. Whole-body magnetic resonance imaging in the detection of skeletal metastases in patients with prostate cancer. J Med Imaging Radiat Oncol. 2009;53:241–7. Wang XY, Zhang CY, Jiang XX. Prospective study of bone metastasis from prostate cancer: comparison between large field diffusion-weighted imaging and bone scintigraphy [Chinese]. Chin J Radiol. 2009;43:131–5. Beheshti M, Vali R, Waldenberger P, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008;35:1766–74. Langsteger W, Balogova S, Huchet V, et al. Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q J Nucl Med Mol Imaging. 2011;55:448–57. Liu T, Xu JY, Xu W, Bai YR, Yan WL, Yang HL. 18Fluorine deoxyglucose positron emission tomography, magnetic resonance imaging and bone scintigraphy for the diagnosis of bone metastases in patients with lung cancer: which one is the best?—a meta-analysis. Clin Oncol. 2011;23:350–8. Beheshti M, Langsteger W, Fogelman I. Prostate cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med. 2009;39:396–407. Fogelman I, Cook G, Israel O, Van der Wall H. Positron emission tomography and bone metastases. Semin Nucl Med. 2005;35:135–42. Abuzallouf S, Dayes I, Lukka H. Baseline staging of newly diagnosed prostate cancer: a summary of the literature. J Urol. 2004;171:2122–7. Rigaud J, Tiguert R, Le Normand L, et al. Prognostic value of bone scan in patients with metastatic prostate cancer treated initially with androgen deprivation therapy. J Urol. 2002;168:1423–6. Mankoff DA. A definition of molecular imaging. J Nucl Med. 2007;48:18N–21N. Tryciecky EW, Gottschalk A, Ludema K. Oncologic imaging: interactions of nuclear medicine with CT and MRI using the bone scan as a model. Semin Nucl Med. 1997;27:142–51. Gosfield 3rd E, Alavi A, Kneeland B. Comparison of radionuclide bone scans and magnetic resonance imaging in detecting spinal metastases. J Nucl Med. 1993;34:2191–8. Horiuchi-Suzuki K, Konno A, Ueda M, et al. Skeletal affinity of Tc (V)-DMS is bone cell mediated and pH dependent. Eur J Nucl Med Mol Imaging. 2004;31:388–98. Cook GJ, Fogelman I. The role of positron emission tomography in the management of bone metastases. Cancer. 2000;88:2927–33. Savelli G, Chiti A, Grasselli G, Maccauro M, Rodari M, Bombardieri E. The role of bone SPET study in diagnosis of single vertebral metastases. Anticancer Res. 2000;20:1115–20. Han L, Au-Yong T, Tong W, Chu K, Szeto L, Wong C. Comparison of bone single-photon emission tomography and planar imaging in the detection of vertebral metastases in patients with back pain. Eur J Nucl Med. 1998;25:635–8. Reinartz P, Schaffeldt J, Sabri O, et al. Benign versus malignant osseous lesions in the lumbar vertebrae: differentiation by means of bone SPET. Eur J Nucl Med. 2000;27:721–6. Daldrup-Link HE, Franzius C, Link TM, et al. Whole-body MR imaging for detection of bone metastases in children and young adults comparison with skeletal scintigraphy and FDG PET. Am J Roentgenol. 2001;177:229–36. Vogler III JB, Murphy WA. Bone marrow imaging. Radiology. 1988;168:679–93. Tombal B, Rezazadeh A, Therasse P, Van Cangh PJ, Vande Berg B, Lecouvet FE. Magnetic resonance imaging of the axial skeleton enables objective measurement of tumor response on prostate cancer bone metastases. Prostate. 2005;65:178–87. Traill Z, Talbot D, Golding S, Gleeson FV. Magnetic resonance imaging versus radionuclide scintigraphy in screening for bone metastases. Clin Radiol. 1999;54:448–51. Cumming J, Hacking N, Fairhurst J, Ackery D, Jenkins J. Distribution of bony metastases in prostatic carcinoma. Brit J Urol. 1990;66:411–14. Lecouvet F, Simon M, Tombal B, Jamart J, Berg BV, Simoni P. Whole-body MRI (WB-MRI) versus axial skeleton MRI (AS-MRI) to detect and measure bone metastases in prostate cancer (PCa). Eur Radiol. 2010;20:2973–82. Freedman GM, Negendank WG, Hudes GR, Shaer AH, Hanks GE. Preliminary results of a bone marrow magnetic resonance imaging protocol for patients with high-risk prostate cancer. Urology. 1999;54:118–23. Schöder H, Herrmann K, Gönen M, et al. 2-[18F] fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin Cancer Res. 2005;11:4761–9. Liu IJ, Zafar MB, Lai Y-H, Segall GM, Terris MK. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology. 2001;57:108–11. Oyama N, Akino H, Suzuki Y, et al. FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl Med Commun. 2001;22:963–9. Emonds K, Swinnen J, Mortelmans L, Mottaghy F. Molecular imaging of prostate cancer. Methods. 2009;48:193–9. Liu N, Ma L, Zhou W, et al. Bone metastasis in patients with non-small cell lung cancer: the diagnostic role of F-18 FDG PET/CT. Eur J Radiol. 2010;74:231–5. Liu T, Cheng T, Xu W, Yan W-L, Liu J, Yang H-L. A meta-analysis of 18FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with breast cancer. Skeletal Radiol. 2011;40:523–31.