Across-arc variations in K-isotope ratios in lavas of the Izu arc: Evidence for progressive depletion of the slab in K and similarly mobile elements
Tài liệu tham khảo
Alt, 2000, Hydrothermal alteration and fluid fluxes in ophiolites and oceanic crust, Spec. Pap., Geol. Soc. Am., 349, 273
Chavagnac, 2008, Global environmental effects of large volcanic eruptions on ocean chemistry: evidence from “hydrothermal” sediments (ODP Leg 185, Site 1149B), J. Geophys. Res., Solid Earth, 113, 10.1029/2007JB005333
Coogan, 2009, Altered oceanic crust as an inorganic record of paleoseawater Sr concentration, Geochem. Geophys. Geosyst., 10, 10.1029/2008GC002341
Durkin, 2020, An origin of the along-arc compositional variation in the Izu-Bonin arc system, Geosci. Front., 11, 1621, 10.1016/j.gsf.2019.12.004
Freymuth, 2019, Uranium isotope fractionation during slab dehydration beneath the Izu arc, Earth Planet. Sci. Lett., 522, 244, 10.1016/j.epsl.2019.07.006
Gale, 2013, The mean composition of ocean ridge basalts, Geochem. Geophys. Geosyst., 14, 489, 10.1029/2012GC004334
Hauff, 2003, Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system, Geochem. Geophys. Geosyst., 4, 10.1029/2002GC000421
Hermann, 2009, Accessory phase control on the trace element signature of sediment melts in subduction zones, Chem. Geol., 265, 512, 10.1016/j.chemgeo.2009.05.018
Hermann, 2008, Sediment melts at sub-arc depths: an experimental study, J. Petrol., 49, 717, 10.1093/petrology/egm073
Hickey-Vargas, 1991, Isotope characteristics of submarine lavas from the Philippine Sea: implications for the origin of arc and basin magmas of the Philippine tectonic plate, Earth Planet. Sci. Lett., 107, 290, 10.1016/0012-821X(91)90077-U
Hickey-Vargas, 1998, Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: an assessment of local versus large-scale processes, J. Geophys. Res., Solid Earth, 103, 20963, 10.1029/98JB02052
Hochstaedter, 2001, Across-arc geochemical trends in the Izu-Bonin arc: contributions from the subducting slab, Geochem. Geophys. Geosyst., 2, 10.1029/2000GC000105
Hu, 2020, Potassium isotopic heterogeneity in subducting oceanic plates, Sci. Adv., 6, 10.1126/sciadv.abb2472
Hu, 2021, Potassium isotopic evidence for sedimentary input to the mantle source of Lesser Antilles lavas, Geochim. Cosmochim. Acta, 295, 98, 10.1016/j.gca.2020.12.013
Ishizuka, 2006, Variation in the mantle sources of the northern Izu arc with time and space—constraints from high-precision Pb isotopes, J. Volcanol. Geotherm. Res., 156, 266, 10.1016/j.jvolgeores.2006.03.005
Ishizuka, 2009, Two contrasting magmatic types coexist after the cessation of back-arc spreading, Chem. Geol., 266, 274, 10.1016/j.chemgeo.2009.06.014
Kelley, 2003, Composition of altered oceanic crust at ODP Sites 801 and 1149, Geochem. Geophys. Geosyst., 4, 10.1029/2002GC000435
Keppler, 2017, Fluids and trace element transport in subduction zones, Am. Mineral., 102, 5, 10.2138/am-2017-5716
Kessel, 2005, Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth, Nature, 437, 724, 10.1038/nature03971
Kimura, 2010, Origin of cross-chain geochemical variation in Quaternary lavas from the northern Izu arc: using a quantitative mass balance approach to identify mantle sources and mantle wedge processes, Geochem. Geophys. Geosyst., 11, 10.1029/2010GC003050
Li, 2019, First-principles investigation of equilibrium K isotope fractionation among K-bearing minerals, Geochim. Cosmochim. Acta, 264, 30, 10.1016/j.gca.2019.07.038
Liu, 2020, Extremely light K in subducted low-T altered oceanic crust: implications for K recycling in subduction zone, Geochim. Cosmochim. Acta, 277, 206, 10.1016/j.gca.2020.03.025
Liu, 2021, Potassium isotopic composition of low-temperature altered oceanic crust and its impact on the global K cycle, Geochim. Cosmochim. Acta, 311, 59, 10.1016/j.gca.2021.08.001
Mazza, 2020, Tracing dehydration and melting of the subducted slab with tungsten isotopes in arc lavas, Earth Planet. Sci. Lett., 530, 10.1016/j.epsl.2019.115942
Melzer, 2000, Island-arc basalt alkali ratios: constraints from phengite-fluid partitioning experiments, Geology, 28, 583, 10.1130/0091-7613(2000)28<583:IBARCF>2.0.CO;2
Parendo, 2017, K isotopes as a tracer of seafloor hydrothermal alteration, Proc. Natl. Acad. Sci., 201609228
Pearce, 1982, Trace element characteristics of lavas from destructive plate boundaries, Andesites, 8, 525
Pearce, 2006, Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives, vol. 166, 63
Pirard, 2015, Focused fluid transfer through the mantle above subduction zones, Geology, 43, 915, 10.1130/G37026.1
Plank, 2007, Chemical composition of sediments subducting at the Izu-Bonin trench, Geochem. Geophys. Geosyst., 8, 10.1029/2006GC001444
Ryan, 2009, Global multi-resolution topography synthesis, Geochem. Geophys. Geosyst., 10, 10.1029/2008GC002332
Santiago Ramos, 2020, Low-temperature oceanic crust alteration and the isotopic budgets of potassium and magnesium in seawater, Earth Planet. Sci. Lett., 541, 10.1016/j.epsl.2020.116290
Schmidt, 2004, Melting and dissolution of subducting crust at high pressures: the key role of white mica, Earth Planet. Sci. Lett., 228, 65, 10.1016/j.epsl.2004.09.020
Scudder, 2014, Regional-scale input of dispersed and discrete volcanic ash to the Izu-Bonin and Mariana subduction zones, Geochem. Geophys. Geosyst., 15, 4369, 10.1002/2014GC005561
Sekine, 1982, Phase relationships in the system KAlSiO 4-Mg 2 SiO 4-SiO 2-H 2 O as a model for hybridization between hydrous siliceous melts and peridotite, Contrib. Mineral. Petrol., 79, 368, 10.1007/BF01132066
Spandler, 2006, High-pressure veins in eclogite from New Caledonia and their significance for fluid migration in subduction zones, Lithos, 89, 135, 10.1016/j.lithos.2005.12.003
Spandler, 2013, Element recycling from subducting slabs to arc crust: a review, Lithos, 170–171, 208, 10.1016/j.lithos.2013.02.016
Straub, 2009, Mid-ocean-ridge basalt of Indian type in the northwest Pacific Ocean basin, Nat. Geosci., 2, 286, 10.1038/ngeo471
Straub, 2010, Slab and mantle controls on the Sr–Nd–Pb–Hf isotope evolution of the post 42 Ma Izu–Bonin volcanic arc, J. Petrol., 51, 993, 10.1093/petrology/egq009
Syracuse, 2010, The global range of subduction zone thermal models, Phys. Earth Planet. Inter., 183, 73, 10.1016/j.pepi.2010.02.004
Taylor, 1998, Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu–Bonin arc, Japan, Earth Planet. Sci. Lett., 164, 79, 10.1016/S0012-821X(98)00182-4
Tollstrup, 2010, Across-arc geochemical trends in the Izu-Bonin arc: contributions from the subducting slab, revisited, Geochem. Geophys. Geosyst., 11, 10.1029/2009GC002847
Tuller-Ross, 2019, Potassium isotope systematics of oceanic basalts, Geochim. Cosmochim. Acta, 259, 144, 10.1016/j.gca.2019.06.001
Villalobos-Orchard, 2020, Molybdenum isotope ratios in Izu arc basalts: the control of subduction zone fluids on compositional variations in arc volcanic systems, Geochim. Cosmochim. Acta, 288, 68, 10.1016/j.gca.2020.07.043
Zeng, 2019, Ab initio calculation of equilibrium isotopic fractionations of potassium and rubidium in minerals and water, ACS Earth Space Chem., 3, 2601, 10.1021/acsearthspacechem.9b00180