Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water

Journal of Colloid and Interface Science - Tập 511 - Trang 193-202 - 2018
María V. López-Ramón1, Miguel A. Álvarez1, Carlos Moreno-Castilla2, María A. Fontecha-Cámara1, África Yebra-Rodríguez3, Esther Bailón-García2
1Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain
2Departamento de Química Inorgánica, Universidad de Granada, 18071 Granada, Spain
3Departamento de Geología, Universidad de Jaén, 23071 Jaén, Spain

Tài liệu tham khảo

Reitz, 2012, Soft-templating synthesis of mesoporous magnetic CuFe2O4 thin films with ordered 3D honeycomb structure and partially inverted nanocrystalline spinel domains, Chem. Commun., 48, 4471, 10.1039/c2cc31006f Albuquerque, 2012, Nanostructured ferrites: structural analysis and catalytic activity, Ceram. Int., 38, 2225, 10.1016/j.ceramint.2011.10.071 Muñoz, 2015, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – A review, Appl. Catal. B: Environ., 176–177, 249, 10.1016/j.apcatb.2015.04.003 Fontecha-Cámara, 2016, Mixed iron oxides as Fenton catalysts for gallic acid removal from aqueous solutions, Appl. Catal. B: Environ., 196, 207, 10.1016/j.apcatb.2016.05.032 Duesterberg, 2005, Fenton-mediated oxidation in the presence and absence of oxygen, Environ. Sci. Technol., 39, 5052, 10.1021/es048378a Pignatello, 2006, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol., 36, 1, 10.1080/10643380500326564 Nichela, 2013, Nitrobenzene degradation in Fenton-like systems using Cu(II) as catalyst. Comparison between Cu(II)- and Fe(III)-based systems, Chem. Eng. J., 228, 1148, 10.1016/j.cej.2013.05.002 Yang, 2009, Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation, J. Alloy Compd., 476, 715, 10.1016/j.jallcom.2008.09.104 Faungnawakij, 2009, Crystal structure and surface species of CuFe2O4 spinel catalysts in steam reforming of dimethyl ether, Appl. Catal. B: Environ., 92, 341, 10.1016/j.apcatb.2009.08.013 Xiao, 2012, Preparation, structure and catalytic properties of magnetically separable Cu-Fe catalysts for glycerol hydrogenolysis, J. Mater. Chem., 22, 16598, 10.1039/c2jm32869k Ding, 2013, Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate, Appl. Catal. B: Environ., 129, 153, 10.1016/j.apcatb.2012.09.015 Guan, 2013, Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals, Water Res., 47, 5431, 10.1016/j.watres.2013.06.023 Zhuravlev, 2017, Structural parameters and magnetic properties of copper ferrite nanopowders obtained by the sol-gel combustion, J. Alloy Compd., 692, 705, 10.1016/j.jallcom.2016.09.069 Wu, 2004, Removal of azo-dye Acid Red B (ARB) by adsorption and catalytic combustion using magnetic CuFe2O4 powder, Appl. Catal. B: Environ., 48, 49, 10.1016/j.apcatb.2003.09.006 Nedkov, 2006, Magnetic structure and collective Jahn-Teller distortions in nanostructured particles of CuFe2O4, Appl. Surf. Sci., 253, 2589, 10.1016/j.apsusc.2006.05.049 Qi, 2015, Ozonation of phenacetin in associated with a magnetic catalyst CuFe2O4: the reaction and transformation, Chem. Eng. J., 262, 552, 10.1016/j.cej.2014.09.068 Goya, 1998, Superparamagnetic transition and local disorder in CuFe2O4 nanoparticles, Nanostruct. Mater., 10, 1001, 10.1016/S0965-9773(98)00133-0 Deng, 2007, Synthesis of crystal MFe2O4 (M = Mg, Cu, Ni) microspheres, Mater. Chem. Phys., 101, 509, 10.1016/j.matchemphys.2006.10.002 Shen, 2013, Facile preparation of sphere-like copper ferrite nanostructures and their enhanced visible-light-induced photocatalytic conversion of benzene, Mater. Res. Bull., 48, 4216, 10.1016/j.materresbull.2013.06.063 Zhu, 2013, Facile fabrication of hierarchically porous CuFe2O4 nanospheres with enhanced capacitance property, ACS Appl. Mater. Interface, 5, 6030, 10.1021/am4007353 Feng, 2013, CuFe2O4 magnetic nanoparticles: a simple and efficient catalyst for the reduction of nitrophenol, Chem. Eng. J., 221, 16, 10.1016/j.cej.2013.02.009 Zhao, 2016, Enhanced catalytic ozonation for NOx removal with CuFe2O4 nanoparticles and mechanism analysis, J. Mol. Catal. A: Chem., 424, 153, 10.1016/j.molcata.2016.08.007 S.d. Ma, J. Feng, W.j. Qin, Y.y. Ju, X.g. Chen, CuFe2O4@PDA magnetic nanomaterials with a core-shell structure: synthesis and catalytic application in the degradation of methylene blue in water, RSC Adv. 5 (2015) 53514–53523. Maezono, 2011, Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II, Chemosphere, 82, 1422, 10.1016/j.chemosphere.2010.11.052 Baldrian, 2006, Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides, Appl. Catal. B: Environ., 66, 258, 10.1016/j.apcatb.2006.04.001 Wang, 2014, Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid, Appl. Catal. B: Environ., 147, 534, 10.1016/j.apcatb.2013.09.017 T. Degen, M. Sadki, E. Bron, U. König, G. Nénert, The High Score suite, Powder Diffr. 29 (2014) Supplement S2. Downs, 2003, The American Mineralogist crystal structure database, Am. Mineral., 88, 247 Chai, 2004, Rapid determination of hydrogen peroxide in the wood pulp bleaching streams by a dual-wavelength spectroscopic method, Anal. Chim. Acta, 507, 281, 10.1016/j.aca.2003.11.036 Gu, 2008, Facile synthesis and characterization of cobalt ferrite nanocrystals via a simple reduction − oxidation route, J. Phys. Chem. C, 112, 18459, 10.1021/jp806682q Ding, 2014, A facile hard-templating synthesis of mesoporous spinel CoFe2O4 nanostructures as promising electrocatalysts for the H2O2 reduction reaction, RSC Adv., 4, 1754, 10.1039/C3RA45560B Jing, 2015, Efficient photocatalytic degradation of acid fuchsin in aqueous solution using separate porous tetragonal-CuFe2O4 nanotubes, J. Hazard. Mater., 284, 163, 10.1016/j.jhazmat.2014.11.015 Huheey, 1993 Vijayaraj, 2006, On the active spacer and stabilizer role of Zn in Cu1−xZnxFe2O4 in the selective mono-N-methylation of aniline: XPS and catalysis study, J. Catal., 241, 83, 10.1016/j.jcat.2006.04.010 Brabers, 1977, Dilatometric investigation of the phase transition in copper ferrite, Thermochim. Acta, 18, 287, 10.1016/0040-6031(77)85062-4 Xiao, 2012, Preparation, structure and catalytic properties of magnetically separable Cu–Fe catalysts for glycerol hydrogenolysis, J. Mater. Chem., 22, 16598, 10.1039/c2jm32869k Smart, 2012 Ramírez, 2007, Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts, Appl. Catal. B: Environ., 75, 312, 10.1016/j.apcatb.2007.05.003 Zhong, 2014, The constraints of transition metal substitutions (Ti, Cr, Mn, Co and Ni) in magnetite on its catalytic activity in heterogeneous Fenton and UV/Fenton reaction: from the perspective of hydroxyl radical generation, Appl. Catal. B: Environ., 150, 612, 10.1016/j.apcatb.2014.01.007