Pharmacological and Biochemical Aspects of GABAergic Neurotransmission: Pathological and Neuropsychobiological Relationships
Tóm tắt
1. The GABAergic neurotransmission has been implicated in the modulation of many neural networks in forebrain, midbrain and hindbrain, as well as, in several neurological disorders. 2. The complete comprehension of GABA system neurochemical properties and the search for approaches in identifying new targets for the treatment of neural diseases related to GABAergic pathway are of the extreme relevance. 3. The present review will be focused on the pharmacology and biochemistry of the GABA metabolism, GABA receptors and transporters. In addition, the pathological and psychobiological implications related to GABAergic neurotransmission will be considered.
Tài liệu tham khảo
Agostinho, P., Duarte, C. B., Carvalho, A. P., and Oliveira, C. R. (1994). Effect of oxidative stress on the release of [3H]GABA in culture chick retina cells. Brain Res. 655:213–221.
Albrecht, B. E., and Darlison, M. G. (1995). Localization of the rho 1- and rho 2-subunit messenger RNAs in chick retina by in situ hybridization predicts the existence of gamma-aminobutyric acid type C receptor subtypes. Neurosci. Lett. 189:155–158.
Andersen, K. E., Braestrup, C., Gronwald, F. C., Jorgensen, A. S., Nielsen, E. B., Sonnewald, U., Sorensen, P. O., Suzdak, P. D., and Knutsen, L. J. (1993). The synthesis of novel GABA uptake inhibitors. 1. Elucidation of the structure–activity studies leading to the choice of (R)-1-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-piperidinecarboxylic acid (tiagabine) as an anticonvulsant drug candidate. J. Med. Chem. 36:1716–1725.
Andersen, K. E., Lau, J., Lundt, B. F., Petersen, H., Huusfeldt, P. O., Suzdak, P. D., and Swedberg, M. D. (2001b). Synthesis of novel GABA uptake inhibitors. Part 6: Preparation and evaluation of N-Omega asymmetrically substituted nipecotic acid derivatives. Bioorg. Med. Chem. 9:2773–2785.
Andersen, K. E., Sorensen, J. L., Lau, J., Lundt, B. F., Petersen, H., Huusfeldt, P. O., Suzdak, P. D., and Swedberg, M. D. (2001a). Synthesis of novel gamma-aminobutyric acid (GABA) uptake inhibitors. 5. (1) Preparation and structure–activity studies of tricyclic analogues of known GABA uptake inhibitors. J. Med. Chem. 44:2152–2163.
Anderson, M., and Yoshida, M. (1977). Electrophysiological evidence for branching nigral projections to the thalamus and the superior colliculus. Brain Res. 137:361–364.
Araque, A., Li, N., Doyle, R. T., and Haydon, P. G. (2000). SNARE protein-dependent glutamate release from astrocytes. J. Neurosci. 20:666–673.
Attwell, D., Barbour, B., and Szatkowski, M. (1993). Nonvesicular release of neurotransmitter. Neuron 11:401–407.
Awapara, J., Landua, A. J., Fuerst, R., and Seale, B. (1950). Free gamma-aminobutyric acid in brain. J. Biol. Chem. 187:35–39.
Bagri, A., Sandner, G., and DiScala, G. (1989). Effects of unilateral microinjections of GABAergic drugs into the inferior colliculus on auditory evoked potentials and on audiogenic seizure susceptibility. Exp. Neurol. 104:82–87.
Barnes, E. M., Jr. (2000). Intracellular trafficking of GABA(A) receptors. Life Sci. 66:1063–1070.
Bazil, C. W., and Pedley, T. A. (1998). Advances in the medical treatment of epilepsy. Annu. Rev. Med. 49:135–162.
Beckman, M. L., Bernstein, E. M., and Quick, M. W. (1998). Protein kinase C regulates the interaction between a GABA transporter and syntaxin 1A. J. Neurosci. 18:6103–6112.
Benavides, J., Peny, B., Ruano, D., Vitorica, J., and Scatton, B. (1993). Comparative autoradiographic distribution of central omega (benzodiazepine) modulatory site subtypes with high, intermediate and low affinity for zolpidem and alpidem. Brain Res. 604:240–250.
Bernath, S., and Zigmond, M. J. (1988). Characterization of [3H]GABA release from striatal slices: Evidence for a calcium-independent process via the GABA uptake system. Neuroscience 27:563–570.
Bernstein, E. M., and Quick, M. W. (1999). Regulation of gamma-aminobutyric acid (GABA) transporters by extracellular GABA. J. Biol. Chem. 274:889–895.
Bevan, M. D., Smith, A. D., and Bolam, J. P. (1996). The substantia nigra as a site of synaptic integration of functionally diverse information arising from the ventral pallidum and the globus pallidus in the rat. Neurosci. Lett. 75:5–12.
Billinton, A., Ige, A. O., Bolam, J. P., White, J. H., Marshall, F. H., and Emson, P. C. (2001). Advances in the molecular understanding of GABA(B) receptors. Trends Neurosci. 24:277–282.
Blanchard, D. C., Griebel, G., and Blanchard, R. J. (2003). The Mouse Defense Test Battery: Pharmacological and behavioral assays for anxiety and panic. Eur. J. Pharmacol. 463:97–116.
Bolam, J. P., Hanley, J. J., Booth, P. A., and Bevan, M. D. (2000). Synaptic organization of the basal ganglia. J. Anat. 196:527–542.
Borden, L. A. (1996). GABA transporter heterogeneity: Pharmacology and cellular localization. Neurochem. Int. 29:335–356.
Borden, L. A., Smith, K. E., Gustafson, E. L., Branchek, T. A., and Weinshank, R. L. (1995). Cloning and expression of a betaine/GABA transporter from human brain. J. Neurochem. 64:977–984.
Borelli, K. G., Nobre, M. J., Brandão, M. L., and Coimbra, N. C. (2004). Effects of acute and chronic fluoxetine and diazepam on freezing behavior induced by electrical stimulation of dorsolateral and lateral columns of the periaqueductal gray matter. Pharmacol. Biochem. Behav. 77:557–566.
Bormann, J. (2000). The ‘ABC’ of GABA receptors. Trends Pharmacol. Sci. 21:16–19.
Bormann, J., and Feigenspan, A. (1995). GABAC receptors. Trends Neurosci. 18:515–519.
Bottiglieri, T., Anderson, D., Gibson, K. M., Froestl, W., and Diaz-Arrastia, R. (2001). Effect of gamma-hydroxybutyrate on locomotor activity and brain dopamine metabolism in the rat. Soc. Neurosci. Abstr. 27:971.
Bowery, N. G., Bettler, B., Froestl, W., Gallagher, J. P., Marshall, F., Raiteri, M., Bonner, T. I., and Enna,S. J. (2002). International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: Structure and function. Pharmacol. Rev. 54:247–264.
Bowery, N. G., and Enna, S. J. (2000). γ-Aminobutyric acid B receptors: First of the functional metabotropic heterodimers. J. Pharmacol. Exp. Ther. 292:2–7.
Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., and Turnbull, M. (1980).(—)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283:92–94.
Bowery, N. G., Hudson, A. L., and Price, G. W. (1987). GABA-A and GABA-B receptors site distribution in the rat central nervous system. Neuroscience 20:365–383.
Bradford, H. F. (1995). Glutamate, GABA and epilepsy. Prog. Neurobiol. 47:477–511.
Brandão, M. L., Aguiar, J. C., and Graeff, F. G. (1982). GABA mediation of the antiaversive action of the minor tranquilizers. Pharmacol. Biochem. Behav. 16:397–402.
Brandão, M. L., Anseloni, V. Z., Pandóssio, J. E., De Araújo, J. E., and Castilho, V. M. (1999). Neurochemical mechanisms of the defensive behavior in the dorsal midbrain. Neurosci. Biobehav. Rev. 23:863–875.
Brandão, M. L., Cardoso, S. H., Melo, L. L., Motta, V., and Coimbra, N. C. (1994). The neural substrate of defensive behavior in the midbrain tectum. Neurosci. Biobehav. Rev. 18:339–346.
Brandão, M. L., Coimbra, N. C., and Osaki, M. Y. (2001). Changes in the auditory-evoked potentials induced by fear-evoking stimulations. Physiol. Behav. 72:365–372.
Brandão, M. L., DiScala, G., Bouchet, M. J., and Schmitt, P. (1986). Escape behavior induced by blockade of glutamic acid decarboxilase (GAD) in mesencephalic central gray or medial hypothalamus. Pharmacol. Biochem. Behav. 24:497–501.
Brandão, M. L., Melo, L. L., and Cardoso, S. H. (1993). Mechanisms of defense in the inferior colliculus. Behav. Brain Res. 58:49–55.
Brandão, M. L., and Schmitt, P. (1987). Role of nigrocollicular GABAergic fibers in the genesis of aversive behaviour. In Brandão, M. L. (ed.), Neurosciences and Behaviour, Gráfica da UFES, Vitória, Brazil, pp. 31–44.
Brandão, M. L., Tomaz, C., Coimbra, N. C., and Bagri, A. (1988). Defense reaction induced by microinjection of bicuculline into the inferior colliculus. Physiol. Behav. 44:361–365.
Brandão, M. L., Troncoso, A. C., Souza Sila, M. A., and Huston, J. P. (2003). The relevance of neuronal substrates of defense in the midbrain tectum to anxiety and stress: Empirical and conceptual considerations. Eur. J. Pharmacol. 463:225–233.
Cammack, J. N., Rakhilin, S. V., and Schwartz, E. A. (1994). A GABA transporter operates asymmetrically and with variable stoichiometry. Neuron 13:949–960.
Cammack, J. N., and Schwartz, E. A. (1996). Channel behavior in a gamma-aminobutyrate transporter. Proc. Natl. Acad. Sci. U.S.A. 93:723–727.
Cao, Y., Pager, S., and Lester, H. A. (1997). H+ permeation and pH regulation at a mammalian serotonin transporter. J. Neurosci. 17:2257–2266.
Cardoso, S. H., Coimbra, N. C., and Brandão, M. L. (1994). Defensive reactions evoked by activation of NMDA receptors in distinct sites of the inferior colliculus. Behav. Brain Res. 63:17–24.
Cardoso, S. H., Melo, L. L., Coimbra, N. C., and Brandão, M. L. (1992). Opposite effects of low and high doses of morphine on neuronal substrates of aversion in the inferior colliculus. Behav. Pharmacol. 3:489–495.
Cherubini, E., Gaiarsa, J. L., and Ben-Ari, Y. (1991). GABA: An excitatory transmitter in early postnatal life. Trends Neurosci. 14:515–519.
Choi, S., and Silverman, R. B. (2002). Inactivation and inhibition of gamma-aminobutyric acid aminotransferase by conformationally restricted vigabatrin analogues. J. Med. Chem. 45:4531–4539.
Christensen, H., Fykse, E. M., and Fonnum, F. (1991). Inhibition of γ-aminobutyrate and glycine uptake into synaptic vesicles. Eur. J. Pharmacol. 207:73–79.
Christgau, S., Aanstoot, H. J., Schierbeck, H., Bergley, K., Tullin, S., Hejnaes, K., and Baekkeskov, S. (1992). Membrane anchoring of the autoantigen GAD65 to microvesicles in pancreatic beta-cells by palmitoylation in the NH2-terminal domain. J. Cell. Biol. 118:309–320.
Ciesielski, L., Sirnler, S., Gensburger, C., Mandel, P., Taillander, G., Benoit-Guyod, J. L., Boucherle, A., Cohen-Addad, C., and Lajzerowicz, J. (1979). GABA transaminase inhibitors. Adv. Exp. Med. Biol. 23:21–41.
Clément, Y. (1996). Structural and pharmacological aspects of the GABAA receptor: Involvement in behavioral pathogenesis. J. Physiol. Paris 90:1–13.
Coimbra, N. C., and Brandão, M. L. (1993). GABAergic nigro-collicular pathways modulate the defensive behavior elicited by midbraim tectum stimulation. Behav. Brain Res. 59:131–139.
Coimbra, N. C., Eichenberger, G. C. D., Gorchinski, R. T., and Maisonnette, S. S. (1996). Effects of the blockade of opioid receptor of defensive reactions elicited by electrical stimulation within the deep layers of the superior colliculus and DPAG. Brain Res. 736:348–352.
Coimbra, N. C., Leão-Borges, P. C., and Brandão, M. L. (1989). GABAergic fibers from substantia nigra, pars reticulata, modulate escape behaviour induced by midbrain central gray stimulation. Braz. J. Med. Biol. Res. 22:111–114.
Coimbra, N. C., Osaki, M. Y., Eichenberger, G. C. D., Ciscato, J. G., Jr., Jucá, C. E. B., and Biojone,C. R. (2000). Effects of opioid receptor blockade on defensive behavior elicited by electrical stimulation of the aversive substrates of the inferior colliculus in Rattus norvegicus (Rodentia, Muridae). Psychopharmacology 152:422–430.
Condie, B. G., Bain, G., and Gottlieb, D. I. (1997). Cleft palate in mice with a targeted mutation in the gamma-aminobutyric acid-producing enzyme glutamic acid decarboxylase 67. Proc. Natl. Acad. Sci. U.S.A. 94:11451–11455.
Correa, M., Mingote, S., Betz, A., Wisniecki, A., and Salamone, J. D. (2003). Substantia nigra, pars reticulata GABA is involved in the regulation of operant lever pressing: Pharmacological and microdialysis studies. Neuroscience 119:759–766.
Cousins, M. S., Roberts, D. C., and De Wit, H. (2002). GABAB receptor agonists for the treatment of drug addiction: A review of recent findings. Drug Alcohol Depend. 65:209–220.
Coyle, J. T. (2004). The GABA-glutamate connection in schizophrenia: which is the proximate cause? Biochem. Pharmacol. 68:1507–1514.
Crestani, F., Löw, K., Keist, R., Mandelli, M., Möhler, H., and Rudolph, U. (2001). Molecular targets for the myorelaxant action of diazepam. Mol. Pharmacol. 59:442–445.
Crestani, F., Martin, J. R., Möhler, H., and Rudolph, U. (2000). Mechanism of action of the hypnotic zolpidem in vivo. Br. J. Pharmacol. 131:1251–1254.
Cutting, G. R., Lu, L., O’Hara, B., Kasch, L. M., Montrose-Rafizadeh, C., Donovan, D. M., Shimada, S.,Antonarakis, S. E., Guggino, W. B., Uhl, G. R., and Kazazian, H. H. (1991). Cloning of the GABA[rho]1 cDNA: A novel GABA subunit highly expressed in the retina. Proc. Natl. Acad. Sci. U.S.A. 88:2673–2677.
Czuczwar, S. J., and Patsalos, P. N. (2001). The new generation of GABA enhancers. Potential in the treatment of epilepsy. CNS Drugs 15:339–350.
Davies, M. (2003). The role of GABAA receptors in mediating the effects of alcohol in the central nervous system. J. Psychiatry Neurosci. 28:263–274.
Di Chiara, G., Porceddu, M. L., Moreli, M., Mulas, M. L., and Gessa, G. L. (1979). Evidence for a GABAergic projection from the substantia nigra to the ventro-medial thalamus and to the superior colliculus of the rat. Brain Res. 176:273–284.
Dinkel, K., Meinck, H. M., Jury, K. M., Karges, W., and Richter, W. (1998). Inhibition of gamma-aminobutyric acid synthesis by glutamic acid decarboxylase autoantibodies in stiff-man syndrome. Ann. Neurol. 44:194–201.
Dinkel, K., Rickert, M., Moller, G., Adamski, J., Meinck, H. M., and Richter, W. (2002). Stiff-man syndrome: Identification of 17 beta-hydroxysteroid dehydrogenase type 4 as a novel 80-kDa antineuronal antigen. J. Neuroimmunol. 130:184–193.
Dodd, P. R., Watson, W. E., Morrison, M. M., Johnston, G. A., Bird, E. D., Cowburn, R. F., and Hardy, J. A. (1989). Uptake of gamma-aminobutyric acid and L-glutamic acid by synaptosomes from postmortem human cerebral cortex: Multiple sites, sodium dependence and effect of tissue preparation. Brain Res. 490:320–331.
Dolphin, A. C., and Scott, R. H. (1987). Calcium channel currents and their inhibition by (—)-baclofen in rat sensory neurones: Modulation by guanine nucleotides. J. Physiol. (Lond.) 386:1–17.
Eichenberger, G. C. D., Ribeiro, S. J., Osaki, M. Y., Maruoka, R. Y., Resende, G. C. C., Castellan-Baldan, L., Corrêa, S. A. L., Da Silva, L. A., and Coimbra, N. C. (2002). Neuroanatomical and psychopharmacological evidences for interactions between opioid and GABAergic neural pathways in the modulation of the defensive behavior elicited by electrical and chemical stimulation of the dorsal mesencephalon. Neuropharmacology 42:48–59.
Enz, R., and Cutting, G. R. (1998). Molecular composition of GABAC receptors. Vision Res. 38:1431–1441.
Faingold, C. L., Gehlbach, C., and Caspary, D. M. (1983). Effects of GABA on inferior colliculus neuronal responses to accoustic stimuli. Soc. Neurosci. Abstr. 11:247.
Faingold, C. L., N’Gouerno, P., and Riaz, A. (1998). Ethanol and neurotransmitter interactions–-From molecular to integrative effects. Prog. Neurobiol. 55:509–535.
Fallon, J. H., and Laughlin, S. E. (1995). Substantia nigra. In Paxinos, G. (ed.), The Rat Nervous System, Academic Press, San Diego, CA, pp. 215–237.
Finn, M., Mayorga, A. J., Conlan, A., and Salamone, J. D. (1997). Involvement of pallidal and nigral GABA mechanisms in the generation of tremulous jaw movements in rats. Neuroscience 80:535–544.
Frolund, B., Ebert, B., Kristiansen, U., Liljefors, T., and Krogsgaard-Larsen, P. (2002). GABA(A) receptor ligands and their therapeutic potentials. Curr. Top. Med. Chem. 2:817–832.
Fu, M., and Silverman, R. B. (1999). Isolation and characterization of the product of inactivation of gamma-aminobutyric acid aminotransferase by gabaculine. Bioorg. Med. Chem. 7:1581–1590.
Gadea, A., and Lopez-Colomé, A. M. (2001). Glial transporters for glutamate, glycine, and GABA: II. GABA transporters. J. Neurosci. Res. 63:461–468.
Gahwiler, B. H., and Brown, D. A. (1985). GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc. Natl. Acad. Sci. U.S.A. 82:1558–1562.
Garret, M., Bascles, L., Boue-Grabot, E., Sartor, P., Charron, G., Bloch, B., and Margolskee, R. F. (1997). An mRNA encoding a putative GABA-gated chloride channel is expressed in the human cardiac conduction system. J. Neurochem. 68:1382–1389.
Gaspary, H. L., Wang, W., and Richerson, G. B. (1998). Carrier-mediated GABA release activates GABA receptors on hippocampal neurons. J. Neurophysiol. 80:270–281.
Gerfen, C. R. (1992). The neostriatal mosaic: Multiple levels of organization in the basal ganglia. Annu. Rev. Neurosci. 15:285–320.
Gibson, K. M., Christensen, E., Jakobs, C., Fowler, B., Clarke, M. A., Hammersen, G., Raab, K., Kobori, J., Moosa, A., Vollmer, B., Rossier, E., Iafolla, A. K., Matern, D., Brouwer, O. F., Finkelstein, J., Aksu, F., Weber, H. P., Bakkeren, J. A., Gabreels, F. J., Bluestone, D., Barron, T. F., Beauvais, P., Rabier, D., Santos, C., Umansky, R., and Lehnert, W. (1997). The clinical phenotype of succinic semialdehyde dehydrogenase deficiency (4-hydroxybutyric aciduria): Case reports of 23 new patients. Pediatrics 99:567–574.
Gilman, T. T., and Marcuse, F. (1949). Animal hypnosis. Psychol. Bull. 46:151–165.
Goldsmith, J. D., Kujawa, S. G., McLaren, J. D., and Bledsoe, S. C., Jr. (1995). In vivo release of neuroactive amino acids from the inferior colliculus of the guinea pig using brain microdialysis. Hear. Res. 83:80–88.
Graeff, F. G. (1990). Brain defense systems and anxiety. In Roth, M., Burrows, G. D., and Noyes, R. (eds.), Handbook of Anxiety, Vol. 3, Elsevier Science, Amsterdam, pp. 307–354.
Griebel, G., Perrault, G., Simiand, J., Cohen, C., Granger, P., Depoortere, H., Francon, D., Avenet, P., Schoemaker, H., Evanno, Y., Sevrin, M., George, P., and Scatton, B. (2003). SL651498, a GABAA receptor agonist with subtype-selective efficacy, as a potential treatment for generalized anxiety disorder and muscle spasms. CNS Drug Rev. 9:3–20.
Hanania, T., and Johnson, K. M. R (1998). Regulation of neurotransmitter release by endogenous nitric oxide in striatal slices. Eur. J. Pharmacol. 359:111–117.
Harayama, N., Shibuya, I., Tanaka, K., Kabashima, N., Ueta, Y., and Yamashita, H. (1998). Inhibition of N- and P/Q-type calcium channels by postsynaptic GABAB receptor activation in rat supraoptic neurones. J. Physiol. (Lond.) 509:371–383.
Hendry, S. H., Schwark, H. D., Jones, E. G., and Yan, J. (1987). Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J. Neurosci. 7:1503–1519.
Hess, W. R., and Brügger, M. (1943). Das subkortikale zentrum der affectiven abwerreaktion. Helv. Physiol. Pharmacol. Acta 1:33–52.
Hill, D. R., and Bowery, N. G. (1981). 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290:149–152.
Hosak, L., and Libiger, J. (2002). Antiepileptic drugs in schizophrenia: A review. Eur. Psychiatry 17:371–378.
Huff, R. A., Vaughan, R. A., Kuhar, M. J., and Uhl, G. R. (1997). Phorbol esters increase dopamine transporter phosphorylation and decrease transport Vmax. J. Neurochem. 68:225–232.
Hunsperger, R. W. (1956). Affektreaktionen auf elektrische Reizung in Himstamm der Katze. Helv. Physiol. Pharmacol. Acta 14:70–92.
Iversen, L. L., and Kelly, J. S. (1975). Uptake and metabolism of gamma-aminobutyric acid by neurones and glial cells. Biochem. Pharmacol. 24:933–938.
Iversen, L. L., and Neal, M. J. (1968). The uptake of [3H]GABA by slices of rat cerebral cortex. J. Neurochem. 15:1141–1149.
Jeon, S. G., Bahn, J. H., Jang, J. S., Jang, S. H., Lee, B. R., Lee, K. S., Park, J., Kang, T. C., Won, M. H., Kim, H. B., Kwo, O. S., Cho, S. W., and Choi, S. Y. (2001). Molecular cloning and functional expression of bovine brain GABA transaminase. Mol. Cells. 12:91–96.
Johnston, G. A., Chebib, M., Hanrahan, J. R., and Mewett, K. N. (2003). GABA(C) receptors as drug targets. Curr. Drug Target CNS Neurol. Disord. 2:260–268.
Johnston, G. A. R. (1994). GABAC receptors. Prog. Brain Res. 100:61–65.
Johnston, G. A. R. (1996a). GABAA receptor pharmacology. Pharmacol. Ther. 69:173–198.
Johnston, G. A. R. (1996b). GABAC receptors: Relatively simple transmitter-gated ion channels? TiPS 17:319–323.
Johnston, G. A. R., Curtis, D. R., Beart, P. M., Game, C. J. A., McCulluch, R. M., and Twitchin, B. (1975). Cis- and trans-4-aminocrotonic acid as GABA analogues of restricted conformation. J. Neurochem. 24:157–160.
Jonas, P., Bischofberger, J., and Sandkuhler, J. (1998). Correlease of two fast neurotransmitters at a central synapse. Science 281:419–424.
Jones, K. A., Tamm, J. A., Craig, D. A., Yao, W.-J., and Panico, R. (2000). Signal transduction by GABAB receptor heterodimers. Neuropsychopharmacology 23:S41–S49.
Jones-Davis, D. M., and Macdonald, R. L. (2003). GABAA receptor function and pharmacology in epilepsy and status epilepticus. Curr. Opin. Pharmacol. 3:12–18.
Jung, M. J., Lippert, B., Metcalf, B. W., Bohlen, P., and Schechter, P. J. (1977). Gamma-vinyl GABA (4-amino-hex-5-enoic acid), a new selective irreversible inhibitor of GABA-T: Effects on brain GABA metabolism in mice. J. Neurochem. 29:797–802.
Jursky, F., Tamura, S., Tamura, A., Mandiyan, S., Nelson, H., and Nelson, N. (1994). Structure, function and brain localization of neurotransmitter transporters. J. Exp. Biol. 196:283–295.
Kavanaugh, M. P., Arriza, J. L., North, R. A., and Amara, S. G. (1992). Electrogenic uptake of gamma-aminobutyric acid by a cloned transporter expressed in Xenopus oocytes. J. Biol. Chem. 267:22007–22009.
Kerr, D. I., and Ong, J. (1995). GABAB receptors. Pharmacol. Ther. 67:187–246.
Kha, H. T., Finkelstein, D. I., Tomas, D., Drago, J., Pow, D. V., and Horne, M. K. (2001). Projections from the substantia nigra, pars reticulata to the motor thalamus of the rat: Single axon reconstructions and immunohistochemical study. J. Comp. Neurol. 440:20–30.
Klepner, C. A., Lippa, A. S., Benson, D. I., Sano, M. C., and Beer, B. (1979). Resolution of two biochemically and pharmacologically distinct benzodiazepine receptors. Pharmacol. Biochem. Behav. 11:457–462.
Koch, M., Frendt, M., and Kretschemer, B. D. (2000). Role of the substantia nigra, pars reticulata in sensorimotor gating, measured by prepulse inhibition of startle in rats. Behav. Brain Res. 117:153–162.
Korpi, E. R., Grunder, G., and Luddens, H. (2002). Drug interactions at GABA(A) receptors. Prog. Neurobiol. 67:113–159.
Kriem, B., Cagniard, B., Bouquet, C., Rostain, J. C., and Abraini, J. H. (1998). Modulation by GABA transmission in the substantia nigra compacta and reticulata of locomotor activity in rats exposed to high pressure. Neuroreport 9:1343–1347.
Krnjevic, K. (1974). Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54:418–540.
Krogsgaard-Larsen, P., Falch, E., Larsson, O. M., and Schousboe, A. (1987). GABA uptake inhibitors: Relevance to antiepileptic drug research. Epilepsy Res. 1:77–93.
Krogsgaard-Larsen, P., Frolund, B. F., and Falch, E. (1998). Inhibitors of gamma-aminobutyric acid transport as experimental tools and therapeutic agents. Methods Enzymol. 296:165–175.
Krogsgaard-Larsen, P., Frolund, B., and Frydenvang, K. (2000). GABA uptake inhibitors. Design, molecular pharmacology and therapeutic aspects. Curr. Pharm. Des. 6:1193–1209.
Krogsgaard-Larsen, P., and Johnston, G. A. (1975). Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J. Neurochem. 25:797–802.
Krogsgaard-Larsen, P., Schultz, B., Mikkelsen, H., Aaes-Jorgensen, T., and Bogeso, K. P. (1981). THIP, isoguvacine, isoguvacine oxide, and related GABA agonists. Adv. Biochem. Psychopharmacol. 29:69–76.
Kudo, T., and Wada, J. A. (1990). The effect of unilateral claustral lesion on intermittent light stimulation induced seizure in D, L-allylglycine treated cats. Jpn. J. Psychiatry Neurol. 44:436–437.
Kusama, T., Spivak, C. E., Whiting, P., Dawson, V. L., Schaeffer, J. C., and Uhl, G. R. (1993). Pharmacology of GABA rho 1 and GABA alpha/beta receptors expressed in Xenopus oocytes and COS cells. Br. J. Pharmacol. 109:200–206.
Leite-Panissi, C. R. A., Coimbra, N. C., and Menescal-de-Oliveira, L. (2003). The cholinergic stimulation of the central amygdala modifying the tonic immobility response and antinociception in guinea pigs depends on the ventrolateral periaqueductal gray. Brain Res. Bull. 60:167–178.
Leite-Panissi, C. R. A., and Menescal-de-Oliveira, L. (2002). Central nucleus of the amygdala and tonic immobility in guinea pigs. Brain Res. Bull. 58:13–19.
Levi, G., and Raiteri, M. (1993). Carrier-mediated release of neurotransmitters. Trends Neurosci. 16:415–419.
Li, Y., Evans, M. S., and Faingold, C. L. (1999). Synaptic response patterns of neurons in the cortex of the rat inferior colliculus. Hear. Res. 137:15–28.
Liu, Q. R., López-Corcuera, B., Mandiyan, S., Nelson, H., and Nelson, N. (1993). Molecular characterization of four pharmacologically distinct gamma-aminobutyric acid transporters in mouse brain. J. Biol. Chem. 268:2106–2112.
Lloyd, K. G., Morselli, P. L., and Bartholini, G. (1987). GABA and affective disorders. Med. Biol. 65:159–165.
López-Corcuera, B., Liu, Q. R., Mandiyan, S., Nelson, H., and Nelson, N. (1992). Expression of a mouse brain cDNA encoding novel gamma-aminobutyric acid transporter. J. Biol. Chem. 267:17491–17493.
Loscher, W. (1980). Effect of inhibitors of GABA transaminase on the synthesis, binding, uptake, and metabolism of GABA. J. Neurochem. 34:1603–1608.
Loscher, W. (1985). Anticonvulsant action in the epileptic gerbil of novel inhibitors of GABA uptake. Eur. J. Pharmacol. 110:103–108.
Loscher, W., Honack, D., and Gramer, M. (1989). Use of inhibitors of gamma-aminobutyric acid (GABA) transaminase for the estimation of GABA turnover in various brain regions of rats: A reevaluation of aminooxyacetic acid. J. Neurochem. 53:1737–1750.
Löw, K., Crestani, F., Keist, R., Benke, D., Brunig, I., Benson, J. A., Fritschy, J. M., Rulicke, T.,Bluethmann, H., Möhler, H., and Rudolph, U. (2000). Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134.
Lu, L., and Huang, Y. (1998). Separate domains for desensitization of GABA rho 1 and beta 2 subunits expressed in Xenopus oocytes. J. Membr. Biol. 164:115–124.
Luddens, H., Korpi, E. R., and Seeburg, P. H. (1995). GABAA/benzodiazepine receptor heterogeneity: Neurophysiological implications. Neuropharmacology 34:245–254.
Mabjeesh, N. J., Frese, M., Rauen, T., Jeserich, G., and Kanner, B. I. (1992). Neuronal and glial gamma-aminobutyric acid+ transporters are distinct proteins. FEBS Lett. 299:99–102.
Machiyama, Y., Balazs, R., Hammond, B. J., Julian, T., and Richter, D. (1970). The metabolism of gamma-aminobutyrate and glucose in potassium ion-stimulated brain tissue in vitro. Biochem. J. 116:469–481.
Mager, S., Kleinberger-Doron, N., Keshet, G. I., Davidson, N., Kanner, B. I., and Lester, H. A. (1996). Ion binding and permeation at the GABA transporter GAT1. J. Neurosci. 16:5405–5414.
Maisonnette, S. S., Kawasaki, M. C., Coimbra, N. C., and Brandão, M. L. (1996). Effects of lesions of amygdaloid nuclei and substantia nigra on aversive responses induced by electrical stimulation of the inferior colliculus. Brain Res. Bull. 40:93–98.
Maitre, M. (1997). The gamma-hydroxybutyrate signalling system in brain: Organization and functional implications. Prog. Neurobiol. 51:337–361.
Martin, D. L., and Rimvall, K. (1993). Regulation of gamma-aminobutyric acid synthesis in the brain. J. Neurochem. 60:395–407.
Mehta, A. K., and Ticku, M. K. (1999). An update on GABAA receptors. Brain Res. Rev. 29:196–217.
Meldrum, B. S., Menini, C., Naquet, R., Laurent, H., and Stutzmann, J. M. (1979). Proconvulsant, convulsant and other actions of the D- and L-stereoisomers of allylglycine in the photosensitive baboon, Papio papio. Electroencephalogr. Clin. Neurophysiol. 47:383–395.
Melo, L. L., Brandão, M. L., Graeff, F. G., and Sandner, G. (1997). Bilateral ablation of the auditory cortex in the rats alters conditioned emotional suppression to a sound as appraised through a latent inhibition study. Behav. Brain Res. 88:59–65.
Melo, L. L., Cardoso, S. H., and Brandão, M. L. (1992). Antiaversive action of benzodiazepines on escape behavior induced by electrical stimulation of the inferior colliculus. Physiol. Behav. 51:557–562.
Menescal-de-Oliveira, L., and Hoffmann, A. (1993). The parabrachial region as a possible region modulating simultaneously pain and tonic immobility. Behav. Brain Res. 56:127–132.
Metcalf, B. W. (1979). Inhibitors of GABA metabolism. Biochem. Pharmacol. 28:1705–1712.
Mihic, S. J. (1999). Acute effects of ethanol on GABAA and glycine receptor function. Neurochem. Int. 35:115–123.
Milbrandt, J. C., Albin, R. L., Turgeon, S. M., and Caspary, D. M. (1996). GABA-A receptor binding in the aging rat inferior colliculus. Neuroscience 73:449–458.
Millan, M. J. (2003). The neurobiology and control of anxious states. Prog. Neurobiol. 70:83–244.
Minelli, A., Brecha, N. C., Karschin, C., DeBiasi, S., and Conti, F. (1995). GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex. J. Neurosci. 15:7734–7746.
Möhler, H., Fritschy, J. M., and Rudolph, U. (2002). A new benzodiazepine pharmacology. J. Pharmacol. Exp. Ther. 300:2–8.
Monassi, C. R., Leite-Panissi, C. R., and Menescal-de-Oliveira, L. (1999). Ventrolateral periaqueductal gray matter and the control of tonic immobility. Brain Res. Bull. 50:201–208.
Moscowitz, J. A., and Cutler, R. W. (1980). Bidirectional movement of gamma-aminobutyric acid in rat spinal cord slices. J. Neurochem. 35:1394–1399.
Nelson, N. (1998). The family of Na+/Cl− neurotransmitter transporters. J. Neurochem. 71:1785–1803.
Ng, T. K., and Yung, K. K. (2000). Distinct cellular distribution of GABA (B) R1 and GABA (A) alpha 1 receptor immunoreactivity in the rat substantia nigra. Neuroscience 99:65–76.
Nicholls, D., and Attwell, D. (1990). The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11:462–468.
Nicholls, D. G., Sihra, T. S., and Sanchez-Prieto, J. (1987). Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry. J. Neurochem. 49:50–57.
Nicoll, R. A., and Malenka, R. C. (1998). A tale of two transmitters. Science 281:360–361.
Nielsen, M., and Braestrup, C. (1980). Ethyl-beta-carboline-3-carboxylate shows differential benzodiazepine receptors interaction in vitro. Nature 286:606–607.
Olsen, R. W., and DeLorey, T. M. (1999). GABA and glycine. In Siegel, G. J. (ed.), Basic Neurochemistry: Molecular, Cellular and Medical Aspects, Lippincott Williams & Wilkins, Philadelphia, pp. 335–346.
Osaki, M. Y., Castellan-Baldan, L., Calvo, F., Carvalho, A. D., Felippotti, T. T., DeOliveira, R., Ubiali,W. A., Paschoalin-Maurin, T., Elias-Filho, D. H., Motta, V., DaSilva, L. A., and Coimbra, N. C. (2003). Neuroanatomical and neuropharmacological study of opioid pathways in the mesencephalic tectum: Effect of μ1-opioid and κ-opioid receptor blockade on escape behavior induced by electrical stimulation of the inferior colliculus. Brain Res. 992:179–192.
Palfreyman, M. G., Schechter, P. J., Buckett, W. R., Tell, G. P., and Koch-Weser, J. (1981). The pharmacology of GABA-transaminase inhibitors. Biochem. Pharmacol. 30:817–824.
Pandossio, J. E., and Brandão, M. L. (1999). Defensive reactions are counteracted by midazolam and muscimol and elicited by activation of glutamate receptors in the inferior colliculus of rats. Psychopharmacology 142:360–368.
Parent, A., and Hazrati, L. N. (1993). Common structural organization of two output nuclei of primate basal ganglia. Trends Neurosci. 16:308–309.
Park, T. J., and Pollak, G. D. (1993). GABA shapes sensitivity to interaural intensity disparities in the mustache bat’s inferior colliculus: Implications for encoding sound location. J. Neurosci. 13:2050–2067.
Pin, J. P., and Bockaert, J. (1989). Two distinct mechanisms, differentially affected by excitatory amino acids, trigger GABA release from fetal mouse striatal neurons in primary culture. J. Neurosci. 9:648–656.
Piqueras, L., and Martinez, V. (2004). Peripheral GABAB agonists stimulate gastric acid secretion in mice. Br. J. Pharmacol. 142:1038–1048.
Polenzani, L., Woodward, R. M., and Miledi, R. (1991). Expression of mammalian gamma-aminobutyric acid receptors with distinct pharmacology in Xenopus oocytes. Proc. Natl. Acad. Sci. U.S.A. 88:4318–4322.
Qume, M., and Fowler, L. J. (1997). Effect of chronic treatment with the GABA transaminase inhibitors gamma-vinyl GABA and ethanolamine O-sulphate on the in vitro GABA release from rat hippocampus. Br. J. Pharmacol. 122:539–545.
Radian, R., Ottersen, O. P., Storm-Mathisen, J., Castel, M., and Kanner, B. I. (1990). Immunocytochemical localization of the GABA transporter in rat brain. J. Neurosci. 10:1319–1330.
Rando, R. R., and Bangerter, F. W. (1977). The in vivo inhibition of GABA-transaminase by gabaculine. Biochem. Biophys. Res. Commun. 76:1276–1281.
Reetz, A., Solirnema, M., Matteoli, M., Folli, F., Takei, K., and De Carnilli, P. (1991). GABA and pancreatic beta-cells: Colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J. 10:1275–1284.
Reynolds, J. N., Prasad, A., and MacDonald, J. F. (1992). Ethanol modulation of GABA receptor-activated Cl– currents in neurons of the chick, rat and mouse central nervous system. Eur. J. Pharmacol. 224:173–181.
Ribak, C. E., Tong, W. M., and Brecha, N. C. (1996). GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J. Comp. Neurol. 367:595–606.
Roberts, E. (1986a). GABA: The road to neurotransmitter status. In Olsen, R. W., and Venter, C. J. (eds.), Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties, Wiley, New York, pp. 1–39.
Roberts, E. (1986b). What do GABA neurons really do? They make possible variability generation in relation to demand. Exp. Neurol. 93:279–290.
Roberts, E., and Frankel, S. (1950). Gamma-aminobutyric acid in brain: Its formation from glutamic acid. J. Biol. Chem. 187:55–63.
Robinson, M. B., and Dowd, L. A. (1997). Heterogeneity and functional properties of subtypes of sodium-dependent glutamate transporters in the mammalian central nervous system. Adv. Pharmacol. 37:69–115.
Rodgers-Neame, N. T., Isenberg, K. E., and Zorumski, C. F. (1995). Ethanol augments GABA-induced chloride currents in cultured hippocampal neurons. Soc. Neurosci. Abstr. 21:1814.
Romano-Silva, M. A., Ribeiro-Santos, R., Ribeiro, A. M., Gómez, M. V., Diniz, C. R., Cordeiro, M. N., and Brammer, M. J. (1993). Rat cortical synaptosomes have more than one mechanism for Ca2+ entry linked to rapid glutamate release: Studies using the Phoneutria nigriventer toxin PhTX2 and potassium depolarization. Biochem. J. 296:313–319.
Rudolph, U., Crestani, F., Benke, D., Brunig, I., Benson, J. A., Fritschy, J. M., Martin, J. R., Bluethmann, H., and Möhler, H. (1999). Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes. Nature 401:796–800.
Sanacora, G., Gueorguieva, R., Epperson, C. N., Wu, Y. T., Appel, M., Rothman, D. L., Krystal, J. H., and Mason, G. F. (2004). Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch. Gen. Psychiatry 61:705–713.
Sargent, A. B., and Eberhardt, L. E. (1975). Death feigning by ducks in response to predation by red foxes (Volpes fulva). Am. Midl. Natr. 94:108–119.
Sarup, A., Larsson, O. M., Bolving, T., Frolund, B., Krogsgaard-Larsen, P., and Schousboe, A. (2003a). Effects of 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole (exo-THPO) and its N-substituted analogs on GABA transport in cultured neurons and astrocytes and by the four cloned mouse GABA transporters. Neurochem. Int. 43:445–451.
Sarup, A., Larsson, O. M., and Schousboe, A. (2003b). GABA transporters and GABA-transaminase as drug targets. Curr. Drug Target CNS Neurol. Disord. 2:269–277.
Scatton, B., Depoortere, H., George, P., Sevrin, M., Benavides, J., Schoemaker, H., and Perrault, G. (2000). Selectivity for GABAA receptor α subunits as a strategy for developing hypnoselective and anxioselective drugs. Int. J. Neuropsychopharmacol. 3:S41–S43.
Schloss, P., Mayser, W., and Betz, H. (1992). Neurotransmitter transporters. A novel family of integral plasma membrane proteins. FEBS Lett. 307:76–80.
Schmitt, P., Carrive, P., DiScala, G., Jenck, F., Brandão, M. L., Bagri, A., Moreau, J. L., and Sandner, G. (1986). A neuropharmacological study of the periventricular neural substrate involved in flight. Behav. Brain Res. 22:181–190.
Schousboe, A. (2000). Pharmacological and functional characterization of astrocytic GABA transport: A short review. Neurochem. Res. 25:1241–1244.
Schousboe, A., Larsson, O. M., Hertz, L., and Krogsgaard-Larsen, P. (1981). Heterocyclic GABA analogues as selective inhibitors of astroglial GABA uptake. Adv. Biochem. Psychopharmacol. 29:135–141.
Schousboe, A., Larsson, O. M., Wood, J. D., and Krogsgaard-Larsen, P. (1983). Transport and metabolism of gamma-aminobutyric acid in neurons and glia: Implications for epilepsy. Epilepsia 24:531–538.
Schuler, V., Luscher, C., Blanchet, C., Klix, N., Sansig, G., Klebs, K., Schmutz, M., Heid, J., Gentry, C., Urban, L., Fox, A., Spooren, W., Jaton, A. L., Vigouret, J., Pozza, M., Kelly, P. H., Mosbacher, J., Froestl, W., Kaslin, E., Korn, R., Bischoff, S., Kaupmann, K., van der Putten, H., and Bettler, B. (2001). Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron 31:47–58.
Shank, R. P., Gardocki, J. F., Vaught, J. L., Davis, C. B., Schupsky, J. J., Raffa, R. B., Dodgson, S. J., Nortey, S. O., and Maryanoff, B. E. (1994). Topiramate: Preclinical evaluation of structurally novel anticonvulsant. Epilepsia 35:450–460.
Sherif, F. M., and Ahmed, S. S. (1995). Basic aspects of GABA-transaminase in neuropsychiatric disorders. Clin. Biochem. 28:145–154.
Sherif, F., Harro, J., EL-Hwuegi, A., and Oreland, L. (1994a). Anxiolytic-like effect of the GABA-transaminase inhibitor vigabatrin (gamma-vinyl GABA) on rat exploratory activity. Pharmacol. Biochem. Behav. 49:801–805.
Sherif, F., Wahlstrom, G., and Oreland, L. (1994b). Increase in brain GABA-transaminase activity after chronic ethanol treatment in rats. J. Neural Transm. Gen. Sect. 98:69–79.
Sills, G. J. (2003). Pre-clinical studies with the GABAergic compounds vigabatrin and tiagabine. Epileptic Disord. 5:51–56.
Snead, O. C., III (2000). Evidence for a G protein-coupled gamma-hydroxybutyric acid receptor. J. Neurochem. 75:1986–1996.
Sonders, M. S., and Amara, S. G. (1996). Channels in transporters. Curr. Opin. Neurobiol. 6:294–302.
Soudijn, W., and van Wijngaarden, I. (2000). The GABA transporter and its inhibitors. Curr. Med. Chem. 7:1063–1079.
Storici, P., De Biase, D., Bossa, F., Bruno, S., Mozzarelli, A., Peneff, C., Silverman, R. B., and Schirmer, T. (2004). Structures of gamma-aminobutyric acid (GABA) aminotransferase, a pyridoxal 5′-phosphate, and [2Fe–2S] cluster-containing enzyme, complexed with gamma-ethynyl-GABA and with the antiepilepsy drug vigabatrin. J. Biol. Chem. 279:363–373.
Suzdak, P. D., Frederiksen, K., Andersen, K. E., Sorensen, P. O., Knutsen, L. J., and Nielsen, E. B. (1992). NNC-711, a novel potent and selective gamma-aminobutyric acid uptake inhibitor: Pharmacological characterization. Eur. J. Pharmacol. 224:189–198.
Takamori, S., Riedel, D., and Jahn, R. (2000). Immunoisolation of GABA-specific synaptic vesicles defines a functionally distinct subset of synaptic vesicles. J. Neurosci. 20:4904–4911.
Thompson, R. K. R., Foltin, R. W., Boylan, R. J., Sweet, A., Graves, C. A., and Lowitz, C. E. (1981). Tonic immobility in Japanese quail can reduce the probability of sustained attack by cats. Anim. Learn. Behav. 9:145–149.
Tian, N., Petersen, C., Kash, S., Baekkeskov, S., Copenhagen, D., and Nicoll, R. (1999). The role of the synthetic enzyme GAD65 in the control of neuronal gamma-aminobutyric acid release. Proc. Natl. Acad. Sci. U.S.A. 96:12911–12916.
Toney, M. D., Pascarella, S., and De Biase, D. (1995). Active site model for gamma-aminobutyrate aminotransferase explains substrate specificity and inhibitor reactivities. Protein Sci. 4:2366–2374.
Trevitt, T., Carlson, B. B., Correa, M., Keene, A., Morales, M., and Salamone, J. D. (2002). Interactions between dopamine D1 receptors and GABA mechanisms in substantia nigra, pars reticulata: Neurochemical and behavioral studies. Psychopharmacology 159:229–237.
Ulloor, J., Mavanji, V., Saha, S., Siwek, D. F., and Datta, S. (2004). Spontaneous REM sleep is modulated by the activation of the pedunculopontine tegmental GABAB receptors in the freely moving rat. J. Neurophysiol. 91:1822–1831.
Vasconcelos, O. M., and Dalakas, M. C. (2003). Stiff-person Syndrome. Curr. Treat. Options Neurol. 5:79–90.
Vianna, D. M., Graeff, F. G., Brandão, M. L., and Landeira-Fernandez, J. (2001a). Defensive freezing evoked by electrical stimulation of the periaqueductal gray: Comparison between dorsolateral and ventrolateral regions. Neuroreport 12:4109–4112.
Vianna, D. M., Landeira-Fernandez, J., and Brandão, M. L. (2001b). Dorsolateral and ventral regions of the periaqueductal gray matter are involved in distinct types of fear. Neurosci. Biobehav. Rev. 25:711–719.
Wang, D., Deken, S. L., Whitworth, T. L., and Quick, M. W. (2003). Syntaxin 1A inhibits GABA flux, efflux, and exchange mediated by the rat brain GABA transporter GAT1. Mol. Pharmacol. 64:905–913.
White, H. S., Brown, S. D., Woodhead, J. H., Skeen, G. A., and Wolf, H. H. (1997). Topiramate enhances GABA-mediated chloride flux and GABA-evoked chloride currents in murine brain neurons and increases seizure threshold. Epilepsy Res. 28:167–179.
White, J. H., Wise, A., Main, M. J., Green, A., Fraser, N. J., Disney, G. H., Barnes, A. A., Emson, P., Foord, S. M., and Marshal, F. H. (1998). Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396:679–682.
Whiting, P. J. (2003). The GABAA receptor gene family: New opportunities for drug development. Curr. Opin. Drug Discov. Dev. 6:648–657.
Wong, C. G., Bottiglieri, T., and Snead, O. C., III (2003). GABA, gamma-hydroxybutyric acid, and neurological disease. Ann. Neurol. 54:3–12.
Worrall, D. M., and Williams, D. C. (1994). Sodium ion-dependent transporters for neurotransmitters: A review of recent developments. Biochem. J. 297:425–436.
Wu, Y., Wang, W., and Richerson, G. B. (2001). GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter. J. Neurosci. 21:2630–2639.