Ammonium-ion batteries with a wide operating temperature window from −40 to 80 °C
Tài liệu tham khảo
Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741
Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a
Suo, 2015, “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries, Science, 350, 938, 10.1126/science.aab1595
Chao, 2020, Roadmap for advanced aqueous batteries: from design of materials to applications, Sci. Adv., 6, 10.1126/sciadv.aba4098
Wei, 2019, Reversible intercalation of methyl viologen as a dicationic charge carrier in aqueous batteries, Nat. Commun., 10, 3227, 10.1038/s41467-019-11218-5
Yang, 2019, Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite, Nature, 569, 245, 10.1038/s41586-019-1175-6
Jiang, 2020, High-Voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte, Adv. Mater., 32, 1904427, 10.1002/adma.201904427
Jiang, 2019, Building aqueous K-ion batteries for energy storage, Nat. Energy, 4, 495, 10.1038/s41560-019-0388-0
Wan, 2019, Reversible oxygen redox chemistry in aqueous zinc-ion batteries, Angew. Chem. Int. Ed., 58, 7062, 10.1002/anie.201902679
Zhang, 2020, A chemically self-charging aqueous zinc-ion battery, Nat. Commun., 11, 2199, 10.1038/s41467-020-16039-5
Chao, 2019, Intercalation pseudocapacitive behavior powers aqueous batteries, Inside Chem., 5, 1357
Wu, 2018, NH4+ topotactic insertion in berlin green: an exceptionally long-cycling cathode in aqueous ammonium-ion batteries, ACS Appl. Energy Mater., 1, 3077, 10.1021/acsaem.8b00789
Wessells, 2012, The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes, J. Electrochem. Soc., 159, A98, 10.1149/2.060202jes
Vittal, 2008, CTAB-promoted Prussian blue-modified electrode and its cation transport characteristics for K+, Na+, Li+, and NH4+ ions, J. Phys. Chem. B, 112, 1149, 10.1021/jp074994s
Song, 2021, Ammonium-ion storage in electrodeposited manganese oxides, Angew. Chem. Int. Ed., 60, 5718, 10.1002/anie.202013110
Zhao, 2020, Proton intercalation/de-intercalation dynamics in vanadium oxides for aqueous aluminum electrochemical cells, Angew. Chem. Int. Ed., 59, 3048, 10.1002/anie.201912634
Xia, 2021, Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries, Chem. Eng. J., 421, 127759, 10.1016/j.cej.2020.127759
Zhang, 2019, A novel aqueous ammonium dual-ion battery based on organic polymers, J. Mater. Chem. A, 7, 11314, 10.1039/C9TA00254E
Zhang, 2021, Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage, Chem. Eng. J., 421, 127767, 10.1016/j.cej.2020.127767
Zhang, 2021, Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries, ACS Energy Lett., 6, 2704, 10.1021/acsenergylett.1c01054
Vatamanu, 2017, Ramifications of water-in-salt interfacial structure at charged electrodes for electrolyte electrochemical stability, J. Phys. Chem. Lett., 8, 4362, 10.1021/acs.jpclett.7b01879
Wang, 2017, High-Voltage aqueous magnesium ion batteries, ACS Cent. Sci., 3, 1121, 10.1021/acscentsci.7b00361
Suo, 2017, “Water-in-Salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting, Adv. Energy Mater., 7, 1701189, 10.1002/aenm.201701189
Lukatskaya, 2018, Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries, Energy Environ. Sci., 11, 2876, 10.1039/C8EE00833G
Jin, 2021, High-energy aqueous sodium-ion batteries, Angew. Chem. Int. Ed., 60, 11943, 10.1002/anie.202017167
Zhang, 2020, Modulating electrolyte structure for ultralow temperature aqueous zinc batteries, Nat. Commun., 11, 4463, 10.1038/s41467-020-18284-0
Wang, 2018, Highly reversible zinc metal anode for aqueous batteries, Nat. Mater., 17, 543, 10.1038/s41563-018-0063-z
Holoubek, 2018, Amorphous titanic acid electrode: its electrochemical storage of ammonium in a new water-in-salt electrolyte, Chem. Commun., 54, 9805, 10.1039/C8CC04713H
Wang, 2021, New insights into the electrochemistry of carbonyl- and amino-containing polymers for rechargeable zinc-organic batteries, ACS Energy Lett., 6, 1141, 10.1021/acsenergylett.1c00139
Zhao, 2020, Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporous-carbon-supported poly(1,5-naphthalenediamine) nanorods as cathode, Energy Storage Mater., 28, 64, 10.1016/j.ensm.2020.03.001
Li, 2019, A high-rate and long-life aqueous rechargeable ammonium zinc hybrid battery, ChemSusChem, 12, 3732, 10.1002/cssc.201901622
Wu, 2017, Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system, Angew. Chem. Int. Ed., 56, 13026, 10.1002/anie.201707473
Wessells, 2011, The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes, J. Electrochem. Soc., 159, A98, 10.1149/2.060202jes
Li, 2019, Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage, Nanoscale Horiz., 4, 991, 10.1039/C8NH00484F
Yuan, 2020, Intercalation pseudocapacitive nanoscale nickel Hexacyanoferrate@Carbon nanotubes as a high-rate cathode material for aqueous sodium-ion battery, ACS Sustain. Chem. Eng., 8, 3655, 10.1021/acssuschemeng.9b06588
Senthilkumar, 2017, Sodium-ion hybrid electrolyte battery for sustainable energy storage applications, J. Power Sources, 341, 404, 10.1016/j.jpowsour.2016.12.015
Xu, 2019, In situ FTIR-assisted synthesis of nickel hexacyanoferrate cathodes for long-life sodium-ion batteries, ACS Appl. Mater. Interfaces, 11, 29985, 10.1021/acsami.9b10312
Rehman, 2020, Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries, RSC Adv., 10, 27033, 10.1039/D0RA03490H
Li, 2020, Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life, Nano Energy, 68, 104369, 10.1016/j.nanoen.2019.104369
Dong, 2019, Ultra-fast NH4+ storage: strong H bonding between NH4+ and Bi-layered V2O5, Inside Chem., 5, 1537
Liang, 2020, Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry, Adv. Mater., 32, 1907802, 10.1002/adma.201907802
Ren, 2018, Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage, Adv. Energy Mater., 8, 1801413, 10.1002/aenm.201801413
Wu, 2019, Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery, Nat. Commun., 10, 73, 10.1038/s41467-018-07980-7
Xia, 2020, Commercially available Prussian blue get energetic in aqueous K-ion batteries, Chem. Eng. J., 394, 124923, 10.1016/j.cej.2020.124923
Chang, 2020, An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices, Energy Environ. Sci., 13, 3527, 10.1039/D0EE01538E
Zhao, 2018, High-capacity aqueous zinc batteries using sustainable quinone electrodes, Sci. Adv., 4, 10.1126/sciadv.aao1761
Guo, 2018, An environmentally friendly and flexible aqueous zinc battery using an organic cathode, Angew. Chem. Int. Ed., 57, 11737, 10.1002/anie.201807121
Chen, 2017, Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode, ACS Energy Lett., 2, 1115, 10.1021/acsenergylett.7b00040