Ammonium-ion batteries with a wide operating temperature window from −40 to 80 ​°C

eScience - Tập 1 - Trang 212-218 - 2021
Lei Yan1, Ya-e Qi1, Xiaoli Dong1, Yonggang Wang1, Yongyao Xia1
1Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China

Tài liệu tham khảo

Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741 Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a Suo, 2015, “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries, Science, 350, 938, 10.1126/science.aab1595 Chao, 2020, Roadmap for advanced aqueous batteries: from design of materials to applications, Sci. Adv., 6, 10.1126/sciadv.aba4098 Wei, 2019, Reversible intercalation of methyl viologen as a dicationic charge carrier in aqueous batteries, Nat. Commun., 10, 3227, 10.1038/s41467-019-11218-5 Yang, 2019, Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite, Nature, 569, 245, 10.1038/s41586-019-1175-6 Jiang, 2020, High-Voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte, Adv. Mater., 32, 1904427, 10.1002/adma.201904427 Jiang, 2019, Building aqueous K-ion batteries for energy storage, Nat. Energy, 4, 495, 10.1038/s41560-019-0388-0 Wan, 2019, Reversible oxygen redox chemistry in aqueous zinc-ion batteries, Angew. Chem. Int. Ed., 58, 7062, 10.1002/anie.201902679 Zhang, 2020, A chemically self-charging aqueous zinc-ion battery, Nat. Commun., 11, 2199, 10.1038/s41467-020-16039-5 Chao, 2019, Intercalation pseudocapacitive behavior powers aqueous batteries, Inside Chem., 5, 1357 Wu, 2018, NH4+ topotactic insertion in berlin green: an exceptionally long-cycling cathode in aqueous ammonium-ion batteries, ACS Appl. Energy Mater., 1, 3077, 10.1021/acsaem.8b00789 Wessells, 2012, The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes, J. Electrochem. Soc., 159, A98, 10.1149/2.060202jes Vittal, 2008, CTAB-promoted Prussian blue-modified electrode and its cation transport characteristics for K+, Na+, Li+, and NH4+ ions, J. Phys. Chem. B, 112, 1149, 10.1021/jp074994s Song, 2021, Ammonium-ion storage in electrodeposited manganese oxides, Angew. Chem. Int. Ed., 60, 5718, 10.1002/anie.202013110 Zhao, 2020, Proton intercalation/de-intercalation dynamics in vanadium oxides for aqueous aluminum electrochemical cells, Angew. Chem. Int. Ed., 59, 3048, 10.1002/anie.201912634 Xia, 2021, Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries, Chem. Eng. J., 421, 127759, 10.1016/j.cej.2020.127759 Zhang, 2019, A novel aqueous ammonium dual-ion battery based on organic polymers, J. Mater. Chem. A, 7, 11314, 10.1039/C9TA00254E Zhang, 2021, Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage, Chem. Eng. J., 421, 127767, 10.1016/j.cej.2020.127767 Zhang, 2021, Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries, ACS Energy Lett., 6, 2704, 10.1021/acsenergylett.1c01054 Vatamanu, 2017, Ramifications of water-in-salt interfacial structure at charged electrodes for electrolyte electrochemical stability, J. Phys. Chem. Lett., 8, 4362, 10.1021/acs.jpclett.7b01879 Wang, 2017, High-Voltage aqueous magnesium ion batteries, ACS Cent. Sci., 3, 1121, 10.1021/acscentsci.7b00361 Suo, 2017, “Water-in-Salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting, Adv. Energy Mater., 7, 1701189, 10.1002/aenm.201701189 Lukatskaya, 2018, Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries, Energy Environ. Sci., 11, 2876, 10.1039/C8EE00833G Jin, 2021, High-energy aqueous sodium-ion batteries, Angew. Chem. Int. Ed., 60, 11943, 10.1002/anie.202017167 Zhang, 2020, Modulating electrolyte structure for ultralow temperature aqueous zinc batteries, Nat. Commun., 11, 4463, 10.1038/s41467-020-18284-0 Wang, 2018, Highly reversible zinc metal anode for aqueous batteries, Nat. Mater., 17, 543, 10.1038/s41563-018-0063-z Holoubek, 2018, Amorphous titanic acid electrode: its electrochemical storage of ammonium in a new water-in-salt electrolyte, Chem. Commun., 54, 9805, 10.1039/C8CC04713H Wang, 2021, New insights into the electrochemistry of carbonyl- and amino-containing polymers for rechargeable zinc-organic batteries, ACS Energy Lett., 6, 1141, 10.1021/acsenergylett.1c00139 Zhao, 2020, Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporous-carbon-supported poly(1,5-naphthalenediamine) nanorods as cathode, Energy Storage Mater., 28, 64, 10.1016/j.ensm.2020.03.001 Li, 2019, A high-rate and long-life aqueous rechargeable ammonium zinc hybrid battery, ChemSusChem, 12, 3732, 10.1002/cssc.201901622 Wu, 2017, Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system, Angew. Chem. Int. Ed., 56, 13026, 10.1002/anie.201707473 Wessells, 2011, The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes, J. Electrochem. Soc., 159, A98, 10.1149/2.060202jes Li, 2019, Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage, Nanoscale Horiz., 4, 991, 10.1039/C8NH00484F Yuan, 2020, Intercalation pseudocapacitive nanoscale nickel Hexacyanoferrate@Carbon nanotubes as a high-rate cathode material for aqueous sodium-ion battery, ACS Sustain. Chem. Eng., 8, 3655, 10.1021/acssuschemeng.9b06588 Senthilkumar, 2017, Sodium-ion hybrid electrolyte battery for sustainable energy storage applications, J. Power Sources, 341, 404, 10.1016/j.jpowsour.2016.12.015 Xu, 2019, In situ FTIR-assisted synthesis of nickel hexacyanoferrate cathodes for long-life sodium-ion batteries, ACS Appl. Mater. Interfaces, 11, 29985, 10.1021/acsami.9b10312 Rehman, 2020, Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries, RSC Adv., 10, 27033, 10.1039/D0RA03490H Li, 2020, Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life, Nano Energy, 68, 104369, 10.1016/j.nanoen.2019.104369 Dong, 2019, Ultra-fast NH4+ storage: strong H bonding between NH4+ and Bi-layered V2O5, Inside Chem., 5, 1537 Liang, 2020, Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry, Adv. Mater., 32, 1907802, 10.1002/adma.201907802 Ren, 2018, Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage, Adv. Energy Mater., 8, 1801413, 10.1002/aenm.201801413 Wu, 2019, Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery, Nat. Commun., 10, 73, 10.1038/s41467-018-07980-7 Xia, 2020, Commercially available Prussian blue get energetic in aqueous K-ion batteries, Chem. Eng. J., 394, 124923, 10.1016/j.cej.2020.124923 Chang, 2020, An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices, Energy Environ. Sci., 13, 3527, 10.1039/D0EE01538E Zhao, 2018, High-capacity aqueous zinc batteries using sustainable quinone electrodes, Sci. Adv., 4, 10.1126/sciadv.aao1761 Guo, 2018, An environmentally friendly and flexible aqueous zinc battery using an organic cathode, Angew. Chem. Int. Ed., 57, 11737, 10.1002/anie.201807121 Chen, 2017, Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode, ACS Energy Lett., 2, 1115, 10.1021/acsenergylett.7b00040