IntraVAD, An Intra-Ventricular Assistive Device for Heart Failure Patients: Design and Proof of Concept Simulations
Tóm tắt
Ventricular assistive devices are approved by Food and Drug Administration as an alternative to heart transplant for congestive heart failure patients. Unlike other devices requiring open-heart surgery, thin active flexible membrane of IntraVAD, made of ionic polymer-metal composites and shape memory alloys (SMA), enables transcatheter implantation and eliminates thoracotomy. Actuation mechanism of the device mimics the natural motion of the heart, applies almost no shear stress on blood cells, and leaves no stagnant points. Hence, it reduces hemolysis and thrombosis risks. The first step in designing the device is defining the objectives based on hemodynamics of eligible patients. A 3-dimensional model is extracted from magnetic resonance images of a subject to provide a precise representation of the inner shape of the ventricle. Numerical solution to the mathematical model of the behavior of ionic polymer-metal composites is then used to check their compliancy with the objectives. Different actuator designs are evaluated to perform the desired motions and address the cardiac insufficiency. Using an iterative design and simulation process, various geometric and material parameters affecting the performance of the device are optimized, including those of the antagonistic two-way SMA actuators. Although methods and results provided here are for the left ventricle, the same are also applicable to the right ventricle.
Tài liệu tham khảo
Agarwal, S., and K. M. High. Newer-generation ventricular assist devices. Best Pract. Res. Clin. Anaesthesiol. 26:117–130, 2012.
Barbone, A., M. C. Oz, D. Burkhoff, and J. W. Holmes. Normalized diastolic properties after left ventricular assist result from reverse remodeling of chamber geometry. Circulation 104:I229–I232, 2001.
Bermudez, C., K. Minakata, and R. L. Kormos. In: Redo Cardiac Surgery in Adults. New York: Springer, 2012, pp. 67–80. doi:10.1007/978-1-4614-1326-4.
Deole, U., R. Lumia, and M. Shahinpoor. Design and test of IPMC artificial muscle microgripper. J. Micro-NanoMech. 4:95–102, 2008. doi:10.1007/s12213-008-0004-z.
Frazier, O. H., and L. P. Jacob. Small pumps for ventricular assistance: progress in mechanical circulatory support. Cardiol. Clinics 25:553–564, vi, 2007.
Fukamachi, K. New technologies for mechanical circulatory support: current status and future prospects of CorAide and MagScrew technologies. J. Artif. Organs 7:45–57, 2004.
Hershberger, R. E., D. Nauman, T. L. Walker, D. Dutton, and D. Burgess. Care processes and clinical outcomes of continuous outpatient support with inotropes (COSI) in patients with refractory endstage heart failure. J. Card. Fail. 9:180–187, 2003.
Hosseinipour, M., and M. Elahinia. Kinematically stable bipedal locomotion using ionic polymer–metal composite actuators. Smart Mater. Struct. 22:085021, 2013.
Lagoudas, D. C. Shape Memory Alloys Modeling and Engineering Applications. New York: Springer, 2008.
Lagoudas, D., Z. Bo, M. Qidwai, and P. Entchev. SMA UM: User Material Subroutine for Thermomechanical Constitutive Model of Shape Memory Alloys. College Station, TX: Texas A&M University, 2003. http://smart.tamu.edu/SMAText/SMA_UM_Manual.pdf.
McGregor, C. G. A., W. R. Davies, K. Oi, S. S. Teotia, J. M. Schirmer, J. M. Risdahl, H. D. Tazelaar, W. K. Kremers, R. C. Walker, G. W. Byrne, and J. S. Logan. Cardiac xenotransplantation: recent preclinical progress with 3-month median survival. J. Thorac. Cardiovasc. Surg. 130:844–851, 2005.
Nemat-Nasser, S., and Y. Wu. Tailoring actuation of ionic polymer metal composites through cation combination. Smart Struct. Mater. 5051:245–253, 2003.
Potapov, E. V., M. Loebe, B. A. Nasseri, H. Sinawski, H. Kuppe, G. P. Noon, M. E. Debakey, and R. Hetzer. Thoracic transplantation and ventricular assist devices nonpulsatile implantable ventricular assist device. Circulation 3–8, 2000. doi:10.1161/01.CIR.102.suppl.
Roger, V. L., et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125:e2–e220, 2012.
Rosenberg, M., and R. T. V Kung. Extra cardiac ventricular assist device. US Patent 5713954, 1998.
Schlosser, T., K. Pagonidis, C. U. Herborn, P. Hunold, K.-U. Waltering, T. C. Lauenstein, and J. Barkhausen. Assessment of left ventricular parameters using 16-MDCT and new software for endocardial and epicardial border delineation. AJR Am. J. Roentgenol. 184:765–773, 2005.
Seyfarth, M., D. Sibbing, I. Bauer, G. Fröhlich, L. Bott-Flügel, R. Byrne, J. Dirschinger, A. Kastrati, and A. Schömig. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J. Am. Coll. Cardiol. 52:1584–1588, 2008.
Sherif, H. M. F. The artificial ventricle: a conceptual design for a novel mechanical circulatory support system. Minim. Invasive Ther. Allied Technol. 18:178–180, 2009.
Tadokoro, S., and S. Yamagami. An actuator model of ICPF for robotic applications on the basis of physicochemical hypotheses. In: Proceedings. IEEE International Conference on Robotics and Automation 2000, ICRA’00, Vol. 2, pp. 1340–1346, 2000.
Talley, N. J., and S. O’Connor. Examination Medicine: A Guide to Physician Training, 6e (The Examination). Edinburgh: Churchill Livingstone, 2009.
Timms, D. A review of clinical ventricular assist devices. Med. Eng. Phys. 33:1041–1047, 2011.
Toma, C. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98, 2002.
Wang, J. S., D. Shum-Tim, J. Galipeau, E. Chedrawy, N. Eliopoulos, and R. C. Chiu. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J. Thorac. Cardiovasc. Surg. 120:999–1005, 2000.
Williams, M. L., J. R. Trivedi, K. C. McCants, S. D. Prabhu, E. J. Birks, L. Oliver, and M. S. Slaughter. Heart transplant vs left ventricular assist device in heart transplant-eligible patients. Ann. Thorac. Surg. 91:1330–1333; discussion 1333–1334, 2011.
Yushkevich, P. A., J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128, 2006.