Generalized strain-based finite element for non-linear stability analysis of beams with thin-walled open cross-section

Thin-Walled Structures - Tập 193 - Trang 111278 - 2023
J.B. Jonker1
1Faculty of Engineering Technology, University of Twente Enschede 7522 NB, The Netherlands

Tài liệu tham khảo

Mohri, 2008, Large torsion finite element model for thin-walled beams, Comput. Struct., 86, 671, 10.1016/j.compstruc.2007.07.007 Trahair, 2005, Nonlinear elastic nonuniform torsion, J. Struct. Eng. ASCE, 131, 1135, 10.1061/(ASCE)0733-9445(2005)131:7(1135) Prokicc, 2006, On fivefold coupled vibrations of Timoshenko thin-walled beams, Eng. Struct., 28, 54, 10.1016/j.engstruct.2005.07.002 Simo, 1991, A geometrically-exact rod model incorporating shear and torsion-warping deformation, Int. J. Solids Struct., 27, 371, 10.1016/0020-7683(91)90089-X Gruttmann, 2000, Theory and numerics of three-dimensional beams with elastoplastic material behaviour, Int. J. Numer. Methods Eng., 48, 1675, 10.1002/1097-0207(20000830)48:12<1675::AID-NME957>3.0.CO;2-6 Manta, 2016, A geometrically exact Kirchhoff beam model including torsion warping, Comput. Struct., 177, 192, 10.1016/j.compstruc.2016.08.013 Duan, 2019, A geometrically exact cross-section deformable thin-walled beam finite element based on generalized beam theory, Comput. Struct., 218, 32, 10.1016/j.compstruc.2019.04.001 Goncalves, 2010, A large displacement and finite rotation thin-walled beam formulation including cross-section deformation, Comput. Methods Appl. Mech. Engrg., 199, 1627, 10.1016/j.cma.2010.01.006 Han, 2016, On the analysis of thin-walled beams based on Hamiltonian formalism, Comput. Struct., 170, 37, 10.1016/j.compstruc.2016.03.009 Rong, 2020, Geometrically exact thin-walled beam including warping formulated on the special euclidean group SE(3), Comput. Methods Appl. Mech. Engrg., 369, 10.1016/j.cma.2020.113062 Saravia, 2013, A composite beam finite element for multibody dynamics: Application to large wind turbine modeling, Eng. Struct., 56, 1164, 10.1016/j.engstruct.2013.06.037 Crisfield, 1999, Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 455, 1125, 10.1098/rspa.1999.0352 Crisfield, 1996, A unified co-rotational framework for solids, shells and beams, Int. J. Solids Struct., 33, 2969, 10.1016/0020-7683(95)00252-9 Hsiao, 2000, A co-rotational finite element formulation for buckling and postbuckling analyses of spatial beams, Comput. Methods Appl. Mech. Engrg., 188, 567, 10.1016/S0045-7825(99)00284-4 Battini, 2002, Co-rotational beam elements with warping effects in instability problems, Comput. Methods Appl. Mech. Engrg., 191, 1755, 10.1016/S0045-7825(01)00352-8 Rinchen, 2020, Geometric and material nonlinear analysis of thin-walled members with arbitrary open cross-section, Thin-Walled Struct., 153, 10.1016/j.tws.2020.106783 Du, 2021, Three-dimensional nonlinear displacement-based beam element for members with angle and tee sections, Eng. Struct., 239, 10.1016/j.engstruct.2021.112239 Le, 2014, Corotational formulation for nonlinear dynamics of beams with arbitrary thin-walled open cross-sections, Comput. Struct., 134, 112, 10.1016/j.compstruc.2013.11.005 Besseling, 1982, Non-linear theory for elastic beams and rods and its finite element representation, Comput. Methods Appl. Mech. Engrg., 31, 205, 10.1016/0045-7825(82)90025-1 Jonker, 1988 Jonker, 1989, A finite element dynamic analysis of flexible spatial mechanisms and manipulators, Comput. Methods Appl. Mech. Engrg., 76, 17, 10.1016/0045-7825(89)90139-4 K. van der Werff, J.B. Jonker, Dynamics of flexible mechanisms, in: E.J. Haug (Ed.), Proceedings of Computer Aided Analysis and Optimization of Mechanical System Dynamics, Iowa City, USA, 1984, pp. 381–400. Barsoum, 1970, Finite element analysis of torsional and torsional-flexural stability problems, Int. J. Numer. Methods Eng., 2, 335, 10.1002/nme.1620020304 Attard, 1986, Nonlinear theory of non-uniform torsion of thin-walled open beams, Thin-Walled Struct., 4, 101, 10.1016/0263-8231(86)90019-4 Chan, 1987, Geometric nonlinear analysis of asymmetric thin-walled beam-collums, Eng. Struct., 9, 243, 10.1016/0141-0296(87)90023-X Dourakopoulos, 2010, Postbuckling analysis of beams of arbitrary cross section using BEM, Eng. Struct., 32, 3713, 10.1016/j.engstruct.2010.08.016 Liu, 2018, Bifurcation and large-deflection analyses of thin-walled beam–columns with non-symmetric open-sections, Thin-Walled Struct., 132, 287, 10.1016/j.tws.2018.07.044 Jonker, 2021, Three-dimensional beam element for pre- and post-buckling analysis of thin-walled beams in multibody systems, Multibody Syst. Dyn., 52, 59, 10.1007/s11044-021-09777-x Gunnlaugsson, 1982, A finite element formulation for beams with thin walled cross-sections, Comput. Struct., 15, 691, 10.1016/S0045-7949(82)80011-4 Benscoter, 1954, A theory of torsion bending for multicell beams, ASME J. Appl. Mech., 21, 25, 10.1115/1.4010814 Chen, 1989, A Co finite element formulation for thin-walled beams, Int. J. Numer. Methods Eng., 28, 2239, 10.1002/nme.1620281004 Back, 1998, A shear-flexible element with warping for thin-walled open beams, Int. J. Numer. Methods Eng., 43, 1173, 10.1002/(SICI)1097-0207(19981215)43:7<1173::AID-NME340>3.0.CO;2-4 Shakourzadeh, 1995, A torsion bending element for thin-walled beams with open and closed cross sections, Comput. Struct., 55, 1045, 10.1016/0045-7949(94)00509-2 Wu, 1990, Vibration analysis of laminated composite thin-walled beams using finite elements, AIAA J., 29, 736, 10.2514/3.10648 Kollár, 2001, Flexural–torsional buckling of open section composite columns with shear deformation, Int. J. Solids Struct., 38, 7525, 10.1016/S0020-7683(01)00024-5 Vlasov, 1961 Kim, 2005, Exact dynamic/static stiffness matrices of non-symmetric thin-walled beams considering coupled shear deformation effects, Thin-Walled Struct., 43, 701, 10.1016/j.tws.2005.01.004 Minghini, 2007, Locking-free finite elements for shear deformable orthotropic thin-walled beams, Int. J. Numer. Methods Eng., 72, 808, 10.1002/nme.2034 Machado, 2008, Non-linear buckling and postbuckling behavior of thin-walled beams considering shear deformation, Int. J. Non-Linear Mech., 43, 345, 10.1016/j.ijnonlinmec.2007.12.019 Turkalj, 2018, A shear-deformable beam model for stability analysis of orthotropc composite semi-rigid frames, Compos. Struct., 189, 648, 10.1016/j.compstruct.2018.01.105 Alsafadie, 2011, Three-dimensional formulation of a mixed corotational thin-walled beam element incorporating shear and warping deformation, Thin-Walled Struct., 49, 523, 10.1016/j.tws.2010.12.002 Kollár, 2003 Jonker, 2013, A geometrically nonlinear formulation of a three-dimensional beam element for solving large deflection multibody system problems, Int. J. Non-Linear Mech., 53, 63, 10.1016/j.ijnonlinmec.2013.01.012 Meijaard, 1996, Validation of flexible beam elements in dynamic programs, Nonlinear Dynam., 9, 21, 10.1007/BF01833291 Meijaard, 1991, Direct determination of periodic solutions of the dynamical equations of flexible mechanisms and manipulators, Internat. J. Numer. Methods Engrg., 32, 1691, 10.1002/nme.1620320811 Kuipers, 2002 Bleich, 1952 Timoshenko, 1961 Trahair, 1982, Discussion on ‘wagners hypothesis in beam collumn theory’, J. Eng. Mech. ASCE, 108, 575 Mohri, 2001, Flexural–torsional post-buckling analysis of thin-walled elements with open sections, Thin-Walled Struct., 39, 907, 10.1016/S0263-8231(01)00038-6 Kosmatka, 1995, An improved two-node finite element for stability and natural frequencies of axial loaded Timoshenko beams, Comput. Struct., 57, 141, 10.1016/0045-7949(94)00595-T Reddy, 1997, On locking-free shear deformable beam elements SE(3), Comput. Methods Appl. Mech. Engrg., 149, 113, 10.1016/S0045-7825(97)00075-3 Gere, 1997 Shabana, 2005 Jonker, 1991, Linearization of dynamic equations of flexible mechanisms–a finite element approach, Int. J. Numer. Methods Eng., 31, 1375, 10.1002/nme.1620310710 Jonker, 1990, SPACAR–computer program for dynamic analysis of flexible spatial mechanisms and manipulators, 123 http://www.spacar.nl. Meijaard, 2018, A method for calculating and continuing static solutions for flexible multibody systems, ASME J. Comput. Nonlinear Dyn., 13, 1 Bathe, 1999, Adina-automatic dynamic incremental nonlinear analysis system, ADINA Eng. Tralli, 1986, A simple hybrid model for torsion and flexure of thin-walled beams, Comput. Struct., 22, 649, 10.1016/0045-7949(86)90017-9 Pi, 2001, Effects of approximations in analysis of beams of open thin-walled cross-section-part II: 3-D non-linear behaviour, Int. J. Numer. Methods Eng., 51, 773, 10.1002/nme.156 Howell, 2013 Nijenhuis, 2020, Misalignments in an overconstrained flexure mechanism: A cross-hinge stiffness investigation, Precis. Eng., 62, 181, 10.1016/j.precisioneng.2019.11.011 Dwarshuis, 2022, A multinode superelement in the generalized strain formulation, Multibody Syst. Dyn., 56, 367, 10.1007/s11044-022-09850-z