Molecular analysis of blood–retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy

Experimental Eye Research - Tập 122 - Trang 123-131 - 2014
Joanna Wisniewska-Kruk1, Ingeborg Klaassen1, Ilse M.C. Vogels1, Aaron L. Magno2, Chooi-May Lai3, Cornelis J.F. Van Noorden1, Reinier O. Schlingemann1,4, Elizabeth P. Rakoczy3
1Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
2Department of Molecular Ophthalmology, Lions Eye Institute, Nedlands, Western Australia, Australia
3Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
4Department of Clinical and Molecular Ophthalmogenetics, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Science (KNAW), Amsterdam, The Netherlands

Tài liệu tham khảo

Abbott, 2006, Astrocyte-endothelial interactions at the blood-brain barrier, Nat. Rev. Neurosci., 7, 41, 10.1038/nrn1824 Andersen, 2004, Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets, Cancer Res., 64, 5245, 10.1158/0008-5472.CAN-04-0496 Antonetti, 1998, Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content. Penn State Retina Research Group, Diabetes, 47, 1953, 10.2337/diabetes.47.12.1953 Armulik, 2010, Pericytes regulate the blood-brain barrier, Nature, 468, 557, 10.1038/nature09522 Barber, 2005, The Ins2Akita mouse as a model of early retinal complications in diabetes, Investig. Ophthalmol. Vis. Sci., 46, 2210, 10.1167/iovs.04-1340 Biallosterski, 2007, Decreased optical coherence tomography-measured pericentral retinal thickness in patients with diabetes mellitus type 1 with minimal diabetic retinopathy, Br. J. Ophthalmol., 91, 1135, 10.1136/bjo.2006.111534 Carson-Walter, 2005, Plasmalemmal vesicle associated protein-1 is a novel marker implicated in brain tumor angiogenesis, Clin. Cancer Res., 11, 7643, 10.1158/1078-0432.CCR-05-1099 Cohen-Kashi Malina, 2009, Closing the gap between the in-vivo and in-vitro blood-brain barrier tightness, Brain Res., 1284, 12, 10.1016/j.brainres.2009.05.072 Del Toro, 2010, Identification and functional analysis of endothelial tip cell-enriched genes, Blood, 116, 4025, 10.1182/blood-2010-02-270819 Erickson, 2007, Vascular permeability in ocular disease and the role of tight junctions, Angiogenesis, 10, 103, 10.1007/s10456-007-9067-z Feng, 1999, VEGF-induced permeability increase is mediated by caveolae, Investig. Ophthalmol. Vis. Sci., 40, 157 Gesuete, 2011, Glial cells drive preconditioning-induced blood-brain barrier protection, Stroke, 42, 1445, 10.1161/STROKEAHA.110.603266 Hammes, 2002, Pericytes and the pathogenesis of diabetic retinopathy, Diabetes, 51, 3107, 10.2337/diabetes.51.10.3107 Hammes, 2011, Diabetic retinopathy: targeting vasoregression, Diabetes, 60, 9, 10.2337/db10-0454 Han, 2013, Retinal angiogenesis in the Ins2 (Akita) mouse model of diabetic retinopathy, Investig. Ophthalmol. Vis. Sci., 54, 574, 10.1167/iovs.12-10959 Hofman, 2000, VEGF-A induced hyperpermeability of blood-retinal barrier endothelium in vivo is predominantly associated with pinocytotic vesicular transport and not with formation of fenestrations, Curr. Eye Res., 21, 637, 10.1076/0271-3683(200008)2121-VFT637 Hofman, 2001, Role of VEGF-A in endothelial phenotypic shift in human diabetic retinopathy and VEGF-A-induced retinopathy in monkeys, Ophthalmic Res., 33, 156, 10.1159/000055663 Hofman, 2001, Endothelial cell hypertrophy induced by vascular endothelial growth factor in the retina: new insights into the pathogenesis of capillary nonperfusion, Arch. Opthalmol., 119, 861, 10.1001/archopht.119.6.861 Huang, 2011, TNFα is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis, Investig. Ophthalmol. Vis. Sci., 52, 1336, 10.1167/iovs.10-5768 Kezic, 2013, The effects of age and Cx3cr1 deficiency on retinal micoglia in the Ins2Akita diabetic mice, Investig. Ophthalmol. Vis. Sci., 54, 854, 10.1167/iovs.12-10876 Klaassen, 2009, Altered expression of genes related to blood-retina barrier disruption in streptozotocin-induced diabetes, Exp. Eye Res., 89, 4, 10.1016/j.exer.2009.01.006 Klaassen, 2013, Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions, Prog. Retin. Eye Res., 34, 19, 10.1016/j.preteyeres.2013.02.001 Kowluru, 1998, Abnormalities of retinal metabolism in diabetes or experimental galactosemia: V. Relationship between protein kinase C and ATPases, Diabetes, 47, 464, 10.2337/diabetes.47.3.464 Lai, 2005, Long-term evaluation of AAV-mediated sFlt-1 gene therapy for ocular neovascularization in mice and monkeys, Mol. Ther., 12, 659, 10.1016/j.ymthe.2005.04.022 Lai, 2009, rAAV.sFlt-1 gene therapy achieves lasting reversal of retinal neovascularization in the absence of a strong immune response to the viral vector, Investig. Ophthalmol. Vis. Sci., 50, 4279, 10.1167/iovs.08-3253 Liebner, 2011, Differentiation of the brain vasculature: the answer came blowing by the Wnt, J. Angiogenesis Res., 2, 1, 10.1186/2040-2384-2-1 McLenachan, 2013, Absence of clinical correlates of diabetic retinopathy in the Ins2 (Akita) retina, Clin. Exp. Ophthalmol., 41, 582, 10.1111/ceo.12084 Nakagawa, 2009, A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes, Neurochem. Int., 54, 253, 10.1016/j.neuint.2008.12.002 Nakagawa, 2007, Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells, Cell. Mol. Neurobiol., 27, 687, 10.1007/s10571-007-9195-4 Nitta, 2003, Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice, J. Cell Biol., 161, 653, 10.1083/jcb.200302070 Paolinelli, 2011, The molecular basis of the blood brain barrier differentiation and maintenance. Is it still a mystery?, Pharmacol. Res., 63, 165, 10.1016/j.phrs.2010.11.012 Pascariu, 2004, Correlated endothelial caveolin overexpression and increased transcytosis in experimental diabetes, J. Histochem. Cytochem., 52, 65, 10.1177/002215540405200107 Pfister, 2008, A novel mechanism of pericyte loss in experimental diabetic retinopathy, Diabetes, 57, 2495, 10.2337/db08-0325 Rakoczy, 2010, Characterization of a mouse model of hyperglycemia and retinal neovascularization, Am. J. Pathol., 177, 2659, 10.2353/ajpath.2010.090883 Schlingemann, 2009, Treatment of retinal diseases with VEGF antagonists, Prog. Brain Res., 175, 253, 10.1016/S0079-6123(09)17517-9 Schlingemann, 1985, Monoclonal antibody PAL-E specific for endothelium, Lab. Investig., 52, 71 Schlingemann, 1988, Differential expression of endothelium-specific antigen PAL-E in vasculature of brain tumors and preexistent brain capillaries, Ann. N. Y. Acad. Sci., 529, 111, 10.1111/j.1749-6632.1988.tb51434.x Schlingemann, 1997, Vascular expression of endothelial antigen PAL-E indicates absence of blood-ocular barriers in the normal eye, Ophthalmic Res., 29, 130, 10.1159/000268007 Schlingemann, 1999, Increased expression of endothelial antigen PAL-E in human diabetic retinopathy correlates with microvascular leakage, Diabetologia, 42, 596, 10.1007/s001250051200 Shen, 2006, Long-term global retinal microvascular changes in a transgenic vascular endothelial growth factor mouse model, Diabetologia, 49, 1690, 10.1007/s00125-006-0274-8 Shue, 2008, Plasmalemmal vesicle associated protein-1 (PV-1) is a marker of blood-brain barrier disruption in rodent models, BMC Neurosci., 26, 29, 10.1186/1471-2202-9-29 Siemerink, 2012, CD34 marks angiogenic tip cells in human vascular endothelial cell cultures, Angiogenesis, 15, 151, 10.1007/s10456-011-9251-z Stan, 1999, PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia, Proc. Natl. Acad. Sci. U. S. A., 96, 13203, 10.1073/pnas.96.23.13203 Strickland, 2005, Plasmalemmal vesicle-associated protein (PLVAP) is expressed by tumour endothelium and is upregulated by vascular endothelial growth factor-A (VEGF), J. Pathol., 206, 466, 10.1002/path.1805 Vagaja, 2012, Changes in murine hyalocytes are valuable early indicators of ocular disease, Investig. Ophthalmol. Vis. Sci., 53, 1445, 10.1167/iovs.11-8601 Van Eeden, 2006, Early vascular and neuronal changes in a VEGF transgenic mouse model of retinal neovascularization, Investig. Ophthalmol. Vis. Sci., 47, 4638, 10.1167/iovs.06-0251 Wang, 2001, VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly, Am. J. Physiol. Heart Circ. Physiol., 280, 434, 10.1152/ajpheart.2001.280.1.H434 Wisniewska-Kruk, 2012, A novel co-culture model of the blood-retinal barrier based on primary retinal endothelial cells, pericytes and astrocytes, Exp. Eye Res., 96, 181, 10.1016/j.exer.2011.12.003 Witmer, 2002, Altered expression patterns of VEGF receptors in human diabetic retina and in experimental VEGF-induced retinopathy in monkey, Investig. Ophthalmol. Vis. Sci., 43, 849 Witmer, 2003, Vascular endothelial growth factors and angiogenesis in eye disease, Prog. Retin. Eye Res., 22, 1, 10.1016/S1350-9462(02)00043-5 Witmer, 2004, In vivo angiogenic phenotype of endothelial cells and pericytes induced by vascular endothelial growth factor-A, J. Histochem. Cytochem., 52, 39, 10.1177/002215540405200105