Biogenic methane in shale gas and coal bed methane: A review of current knowledge and gaps
Tài liệu tham khảo
Abu Laban, 2009, Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria, FEMS Microbiol. Ecol., 68, 300, 10.1111/j.1574-6941.2009.00672.x
Alain, 2012, Anaerobic utilization of toluene by marine alpha- and gammaproteobacteria reducing nitrate, Microbiology, 158, 2946, 10.1099/mic.0.061598-0
An, 2013, Metagenomics of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common, Environ. Sci. Technol., 47, 10708, 10.1021/es4020184
Annweiler, 2002, Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway, Appl. Environ. Microbiol., 68, 852, 10.1128/AEM.68.2.852-858.2002
Ball, 1996, Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1, J. Bacteriol., 178, 5755, 10.1128/jb.178.19.5755-5761.1996
Barnhart, 2013, Investigation of coal-associated bacterial and archaeal populations from a diffusive microbial sampler (DMS), Int. J. Coal Geol., 115, 64, 10.1016/j.coal.2013.03.006
Baublys, 2015, Microbial controls on the origin and evolution of coal seam gases and production waters of the Walloon Subgroup; Surat Basin, Australia, Int. J. Coal Geol., 147, 85, 10.1016/j.coal.2015.06.007
Beckmann, 2011, Acetogens and acetoclastic Methanosarcinales govern methane formation in abandoned coal mines, Appl. Environ. Microbiol., 77, 3749, 10.1128/AEM.02818-10
Beliveau, 1993, Honey, I shrunk the pores!, J. Can. Pet. Technol., 32, 15, 10.2118/93-08-01
Beller, 2000, Anaerobic toluene activation by benzylsuccinate synthase in a highly enriched methanogenic culture, Appl. Environ. Microbiol., 66, 5503, 10.1128/AEM.66.12.5503-5505.2000
Bergmann, 2011, Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47, Environ. Microbiol., 13, 1125, 10.1111/j.1462-2920.2010.02391.x
Brown, 2011, Identification of source carbon for microbial methane in unconventional gas reservoirs, Am. Assoc. Pet. Geol. Bull., 95, 1321
Burke, 1988, Methane flux and stable hydrogen and carbon isotope composition of sedimentary methane from the Florida Everglades, Glob. Biogeochem. Cycles, 2, 329, 10.1029/GB002i004p00329
Bustin, 1998, Geological controls on coalbed methane reservoir capacity and gas content, Int. J. Coal Geol., 38, 3, 10.1016/S0166-5162(98)00030-5
Bustin, 2008, Impact of shale properties on pore structure and storage characteristics
Chalmers, 2007, The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada, Int. J. Coal Geol., 70, 223, 10.1016/j.coal.2006.05.001
Chalmers, 2007, On the effects of petrographic composition on coalbed methane sorption, Int. J. Coal Geol., 69, 288, 10.1016/j.coal.2006.06.002
Chalmers, 2008, Lower Cretaceous gas shales in northeastern British Columbia, Part I: geological controls on methane sorption capacity, Bull. Can. Petrol. Geol., 56, 1, 10.2113/gscpgbull.56.1.1
Chalmers, 2012, Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig uni, Am. Assoc. Pet. Geol. Bull., 96, 1099
Chang, 2002, Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil, Chemosphere, 48, 717, 10.1016/S0045-6535(02)00151-0
Civan, 2011, Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms, Transp. Porous Media, 86, 925, 10.1007/s11242-010-9665-x
Ciris Energy, 2013, Antelope in situ bioconversion facility project description and update, Re- port submitted to the Wyoming Oil and Gas Conservation Commission
Clarkson, 1996, Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin: implications for coalbed methane potential, Fuel, 75, 1483, 10.1016/0016-2361(96)00142-1
Claypool, 1974, The origin and distribution of methane in marine sediments, vol. 3, 99
Coates, 1995, Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids, Arch. Microbiol., 164, 406, 10.1007/BF02529738
Coleman, 1988, Microbial methane in the shallow Paleozoic sediments and glacial deposits of Illinois, U.S.A, Chem. Geol., 71, 23, 10.1016/0009-2541(88)90103-9
Conrad, 2005, Effect of potassium phosphate fertilization on production and emission of methane and its 13C-stable isotope composition in rice microcosms, Soil Biol. Biochem., 37, 2099, 10.1016/j.soilbio.2005.03.012
Conrad, 1987, Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil, FEMS Microbiol. Lett., 45, 281, 10.1111/j.1574-6968.1987.tb02378.x
Conrad, 1989, Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment, FEMS Microbiol. Lett., 62, 285, 10.1111/j.1574-6968.1989.tb03382.x
Curtis, 2002, Fractured shale-gas systems, Am. Assoc. Pet. Geol. Bull., 86, 1921
da Silva, 2010
Davies, 2011, Methane contamination of drinking water caused by hydraulic fracturing remains unproven, Proc. Natl. Acad. Sci., 108, E871, 10.1073/pnas.1113299108
Davis, 2012, Bacterial communities associated with production facilities of two newly drilled thermogenic natural gas wells in the Barnett Shale (Texas, USA), Microb. Ecol., 64, 942, 10.1007/s00248-012-0073-3
Deppenmeier, 1999, Novel reactions involved in energy conservation by methanogenic archaea, FEBS Lett., 457, 291, 10.1016/S0014-5793(99)01026-1
Doerfert, 2009, Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam, Int. J. Syst. Evol. Microbiol., 59, 1064, 10.1099/ijs.0.003772-0
Drake, 2009, Intermediary ecosystem metabolism as a main driver of methanogenesis in acidic wetland soil, Environ. Microbiol. Rep., 1, 307, 10.1111/j.1758-2229.2009.00050.x
Elshahed, 2001, Benzoate fermentation by the anaerobic bacterium Syntrophus aciditrophicus in the absence of hydrogen-using microorganisms, Appl. Environ. Microbiol., 67, 5520, 10.1128/AEM.67.12.5520-5525.2001
Faiz, 2006, Significance of microbial activity in Australian coal bed methane reservoirs - a review, Bull. Can. Petrol. Geol., 54, 261, 10.2113/gscpgbull.54.3.261
Fakoussa, 1999, Biotechnology and microbiology of coal degradation, Appl. Microbiol. Biotechnol., 52, 25, 10.1007/s002530051483
Fallgren, 2013, Comparison of coal rank for enhanced biogenic natural gas production, Int. J. Coal Geol., 115, 92, 10.1016/j.coal.2013.01.014
Fichter, 2012
Flores, 2008, Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: the geologic factor, Int. J. Coal Geol., 76, 52, 10.1016/j.coal.2008.02.005
Formolo, 2008, Biodegradation of sedimentary organic matter associated with coalbed methane in the Powder River and San Juan Basins, USA, Int. J. Coal Geol., 76, 86, 10.1016/j.coal.2008.03.005
Francis, 1988, Anaerobic microbial dissolution of transition and heavy metal oxides, Appl. Environ. Microbiol., 54, 1009, 10.1128/AEM.54.4.1009-1014.1988
Fredrickson, 1997, Frederickson_et_al_1997.pdf, Geomicrobiology, 14, 183, 10.1080/01490459709378043
Gao, 2009, Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria, Int. J. Syst. Evol. Microbiol., 59, 234, 10.1099/ijs.0.002741-0
Garcia, 2006, The order Methanomicrobiales, 208
Gasparik, 2013, “Multi-temperature” method for high-pressure sorption measurements on moist shales, Rev. Sci. Instrum., 84, 085116, 10.1063/1.4817643
Genthner, 1997, Persistence of polycyclic aromatic hydrocarbon components of creosote under anaerobic enrichment conditions, Arch. Environ. Contam. Toxicol., 32, 99, 10.1007/s002449900160
Gieg, 2010, Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields, Environ. Microbiol., 12, 3074, 10.1111/j.1462-2920.2010.02282.x
Golding, 2013, Stable isotope geochemistry of coal bed and shale gas and related production waters: a review, Int. J. Coal Geol., 120, 24, 10.1016/j.coal.2013.09.001
Grabowski, 2005, Microbial diversity in production waters of a low-temperature biodegraded oil reservoir, FEMS Microbiol. Ecol., 54, 427, 10.1016/j.femsec.2005.05.007
Grbić-Galić, 1987, Transformation of toluene and benzene by mixed methanogenic cultures, Appl. Environ. Microbiol., 53, 254, 10.1128/AEM.53.2.254-260.1987
Green, 2008, Characterization of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin, U.S.A, Int. J. Coal Geol., 76, 34, 10.1016/j.coal.2008.05.001
Gross, 2015, Organic geochemistry of Mississippian shales (Bowland Shale Formation) in central Britain: implications for depositional environment, source rock and gas shale potential, Mar. Pet. Geol., 59, 1, 10.1016/j.marpetgeo.2014.07.022
Grunau, 1983, Natural gas in major basins worldwide attributed to source rock type, thermal history and bacterial origin, 10
Guo, 2012, Pyrosequencing reveals the dominance of methylotrophic methanogenesis in a coal bed methane reservoir associated with Eastern Ordos Basin in China, Int. J. Coal Geol., 93, 56, 10.1016/j.coal.2012.01.014
Guo, 2012, Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China, Appl. Microbiol. Biotechnol., 96, 1587, 10.1007/s00253-012-3889-3
Haack, 1993, Cytophaga xylanolytica sp. nov., a xylan-degrading, anaerobic gliding bacterium, Arch. Microbiol., 159, 6, 10.1007/BF00244257
Hamilton, 2014, Stable isotopic and molecular composition of desorbed coal seam gases from the Walloon Subgroup, eastern Surat Basin, Australia, Int. J. Coal Geol., 122, 21, 10.1016/j.coal.2013.12.003
Hamilton, 2015, Conceptual exploration targeting for microbially enhanced coal bed methane (MECoM) in the Walloon Subgroup, eastern Surat Basin, Australia, Int. J. Coal Geol., 138, 68, 10.1016/j.coal.2014.12.002
Harder, 2000, Anaerobic utilization of essential oils by denitrifying bacteria, Biodegradation, 11, 55, 10.1023/A:1026552724696
Haritash, 2009, Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): a review, J. Hazard. Mater., 169, 1, 10.1016/j.jhazmat.2009.03.137
Harris, 2008, Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals, Int. J. Coal Geol., 76, 46, 10.1016/j.coal.2008.05.019
Head, 2003, Biological activity in the deep subsurface and the origin of heavy oil, Nature, 426, 344, 10.1038/nature02134
Hoehler, 1996, Anaerobic methane oxidation by a methanogen-sulfate reducer consortium: geochemical evidence and biochemical considerations, 326
Hoehler, 1998, Thermodynamic control on hydrogen concentrations in anoxic sediments, Geochim. Cosmochim. Acta, 62, 1745, 10.1016/S0016-7037(98)00106-9
Holmes, 2007, Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell, Int. J. Syst. Evol. Microbiol., 57, 701, 10.1099/ijs.0.64296-0
Hover, 1996, 56576
Huang, 2013, Stimulation of biogenic methane generation in coal samples following chemical treatment with potassium permanganate, Fuel, 111, 813, 10.1016/j.fuel.2013.03.079
Hunt, 1995, Coupling transport and biodegradation of VOCs in surface and subsurface soils, 75
Hylemon, 1998, Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems, FEMS Microbiol. Rev., 22, 475, 10.1111/j.1574-6976.1998.tb00382.x
Jaekel, 2013, Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps, ISME J., 7, 885, 10.1038/ismej.2012.159
Jarvie, 2007, Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment, Am. Assoc. Pet. Geol. Bull., 91, 475
Javadpour, 2009, Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone), J. Can. Pet. Technol., 1–6
Jenden, 1988, Composition and stable-isotope geochemistry of natural gases from Kansas, Midcontinent, U.S.A, Chem. Geol., 71, 117, 10.1016/0009-2541(88)90110-6
Jenkins, 2008, Coalbed- and shale-gas reservoirs, J. Pet. Technol., 60, 92, 10.2118/103514-JPT
Jenneman, 1985, Microbial penetration through nutrient-saturated berea sandstone, Appl. Environ. Microbiol., 50, 383, 10.1128/AEM.50.2.383-391.1985
Jin, 2010, Coalbed gas desorption in canisters: consumption of trapped atmospheric oxygen and implications for measured gas quality, Int. J. Coal Geol., 81, 64, 10.1016/j.coal.2009.10.010
Johnsen, 2005, Principles of microbial PAH-degradation in soil, Environ. Pollut., 133, 71, 10.1016/j.envpol.2004.04.015
Jones, 2008, Bioassay for estimating the biogenic methane-generating potential of coal samples, Int. J. Coal Geol., 76, 138, 10.1016/j.coal.2008.05.011
Jones, 2010, Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium, Appl. Environ. Microbiol., 76, 7013, 10.1128/AEM.00728-10
Jones, 2013, The effect of coal bed dewatering and partial oxidation on biogenic methane potential, Int. J. Coal Geol., 115, 54, 10.1016/j.coal.2013.03.011
Kersters, 2006, Introduction to the Proteobacteria, Prokaryotes, 5, 10.1007/0-387-30745-1_1
Kim, 2005, Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry, Org. Geochem., 36, 1117, 10.1016/j.orggeochem.2005.03.010
Kinnon, 2010, Stable isotope and water quality analysis of coal bed methane production waters and gases from the Bowen Basin, Australia, Int. J. Coal Geol., 82, 219, 10.1016/j.coal.2009.10.014
Kirk, 2012, Impact of commercial natural gas production on geochemistry and microbiology in a shale-gas reservoir, Chem. Geol., 332-333, 15, 10.1016/j.chemgeo.2012.08.032
Kniemeyer, 2001, Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme, J. Biol. Chem., 276, 21381, 10.1074/jbc.M101679200
Krüger, 2014, The biogenic methane potential of European gas shale analogues: results from incubation experiments and thermodynamic modelling, Int. J. Coal Geol., 136, 59, 10.1016/j.coal.2014.09.012
Krumholz, 1997, Confined subsurface microbial communities in Cretaceous rock, Nature, 386, 64, 10.1038/386064a0
Krumholz, 2002, Anaerobic microbial growth from components of Cretaceous shales, Geomicrobiol J., 19, 593, 10.1080/01490450290098559
Kuivila, 1989, Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington, Geochim. Cosmochim. Acta, 53, 409, 10.1016/0016-7037(89)90392-X
Küsel, 2000, Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments, Int. J. Syst. Evol. Microbiol., 50, 537, 10.1099/00207713-50-2-537
Lamberson, 1993, Coalbed methane characteristics of Gates Formation Coals, Northeastern British Columbia: effect of maceral composition, Am. Assoc. Pet. Geol. Bull., 77, 2062
Larsen, 1995, Pore structure of the argonne premium coals, Energy Fuel, 9, 324, 10.1021/ef00050a018
Laxminarayana, 1999, Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals, Int. J. Coal Geol., 40, 309, 10.1016/S0166-5162(99)00005-1
Levine, 1996, Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs, Geol. Soc. Lond. Spec. Publ., 10.1144/GSL.SP.1996.109.01.14
Levy, 1997, Methane capacities of Bowen Basin coals related to coal properties, Fuel, 76, 813, 10.1016/S0016-2361(97)00078-1
Li, 2008, A survey of the microbial populations in some Australian coalbed methane reservoirs, Int. J. Coal Geol., 76, 14, 10.1016/j.coal.2008.04.007
Liu, 1993, H(2)-CO(2)-dependent anaerobic O-demethylation activity in subsurface sediments and by an isolated bacterium, Appl. Environ. Microbiol., 59, 1325, 10.1128/AEM.59.5.1325-1331.1993
Lovley, 1995, Deep subsurface microbial processes, Rev. Geophys., 33, 365, 10.1029/95RG01305
Lovley, 1988, Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments, Geochim. Cosmochim. Acta, 52, 2993, 10.1016/0016-7037(88)90163-9
Lovley, 1990, Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15, Appl. Environ. Microbiol., 56, 1858, 10.1128/AEM.56.6.1858-1864.1990
Lovley, 1987, Rapid assay for microbially reducible ferric iron in aquatic sediments, Appl. Environ. Microbiol., 53, 1536, 10.1128/AEM.53.7.1536-1540.1987
Lovley, 1991, Dissimilatory Fe(III) and Mn(IV) reduction, Microbiol. Rev., 55, 259, 10.1128/MMBR.55.2.259-287.1991
Mah, 1977, Biogenesis of methane, Annu. Rev. Microbiol., 31, 309, 10.1146/annurev.mi.31.100177.001521
Mahaffey, W., Bradfish, J. A., Haveman, S. A., Sutton, B. C., & Greaser, L., 2013. Dispersion of compounds for the stimulation of biogenic gas generation in deposits of carbonaceous material. US 13/847,756.
GB Marsh, AJ Fanelli, JN Armor, P.Z., 1987. Spray-dried inorganic oxides from non-aqueous gels or solutions. US4713233 A.
Martens, 1974, Methane production in the interstitial waters of sulfate-depleted marine sediments, Science, 185, 1167, 10.1126/science.185.4157.1167
Martini, 1996, Microbial generation of economic accumulations of methane within a shallow organic-rich shale, Nature, 383, 155, 10.1038/383155a0
Martini, 1998, Genetic and temporal relations between formation waters and biogenic methane: Upper Devonian Antrim Shale, Michigan Basin, USA, Geochim. Cosmochim. Acta, 62, 1699, 10.1016/S0016-7037(98)00090-8
Martini, 2003, Microbial production and modification of gases in sedimentary basins: a geochemical case study from a Devonian shale gas play, Michigan basin, Am. Assoc. Pet. Geol. Bull., 87, 1355
Martini, 2008, Identification of microbial and thermogenic gas components from Upper Devonian black shale cores, Illinois and Michigan basins, Am. Assoc. Pet. Geol. Bull., 92, 327
Mastalerz, 2008, Variations in pore characteristics in high volatile bituminous coals: implications for coal bed gas content, Int. J. Coal Geol., 76, 205, 10.1016/j.coal.2008.07.006
Mattavelli, 1992, Deep isotopic light methane in northern Italy, 121
Mayumi, 2011, Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan), Environ. Microbiol., 13, 1995, 10.1111/j.1462-2920.2010.02338.x
Mbadinga, 2011, Microbial communities involved in anaerobic degradation of alkanes, Int. Biodeterior. Biodegrad., 65, 1, 10.1016/j.ibiod.2010.11.009
McInerney, 1981, Anaerobic degradation of lactate by syntrophic associations of Methanosarcina barkeri and Desulfovibrio species and effect of H(2) on acetate degradation, Appl. Environ. Microbiol., 41, 346, 10.1128/AEM.41.2.346-354.1981
McInerney, 2007, The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth, Proc. Natl. Acad. Sci. U. S. A., 104, 7600, 10.1073/pnas.0610456104
McInerney, 2008, Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism, Ann. N. Y. Acad. Sci., 1125, 58, 10.1196/annals.1419.005
McInerney, 2009, Syntrophy in anaerobic global carbon cycles, Curr. Opin. Biotechnol., 20, 623, 10.1016/j.copbio.2009.10.001
McIntosh, 2002, Pleistocene recharge to midcontinent basins: effects on salinity structure and microbial gas generation, Geochim. Cosmochim. Acta, 66, 1681, 10.1016/S0016-7037(01)00885-7
McIntosh, 2008, Biogeochemistry of the Forest City Basin coalbed methane play, Int. J. Coal Geol., 76, 111, 10.1016/j.coal.2008.03.004
McIntosh, 2010, Coupled hydrology and biogeochemistry of Paleocene-Eocene coal beds, northern Gulf of Mexico, Geol. Soc. Am. Bull., 122, 1248, 10.1130/B30039.1
Meslé, 2013, Microbial methanogenesis in subsurface oil and coal, Res. Microbiol., 164, 959, 10.1016/j.resmic.2013.07.004
Meslé, 2013, Biostimulation to identify microbial communities involved in methane generation in shallow, kerogen-rich shales, J. Appl. Microbiol., 114, 55, 10.1111/jam.12015
Meslé, 2015, Classes of organic molecules targeted by a methanogenic microbial consortium grown on sedimentary rocks of various maturities, Front. Microbiol., 6, 1
Mihelcic, 1993, Bioavailability of sorbed- and separate-phase chemicals, Biodegradation, 4, 141, 10.1007/BF00695116
Milewska-duda, 2000, Absorption and adsorption of methane and carbon dioxide in hard coal and active carbon, Langmuir, 16, 5458, 10.1021/la991515a
Milkov, 2011, Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs, Org. Geochem., 42, 184, 10.1016/j.orggeochem.2010.12.003
Mitterer, 2010, Methanogenesis and sulfate reduction in marine sediments: a new model, Earth Planet. Sci. Lett., 295, 358, 10.1016/j.epsl.2010.04.009
Mohebali, 2008, Biocatalytic desulfurization (BDS) of petrodiesel fuels, Microbiology, 154, 2169, 10.1099/mic.0.2008/017608-0
Moore, 2012, Coalbed methane: a review, Int. J. Coal Geol., 101, 36, 10.1016/j.coal.2012.05.011
Müller, 2000, Initial steps in the fermentation of 3-hydroxybenzoate by Sporotomaculum hydroxybenzoicum, Arch. Microbiol., 173, 288, 10.1007/s002030000148
Murali Mohan, 2013, Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas, FEMS Microbiol. Ecol., 86, 567, 10.1111/1574-6941.12183
Musat, 2008, Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype, Environ. Microbiol., 10, 10
Orem, 2007, Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA, Appl. Geochem., 22, 2240, 10.1016/j.apgeochem.2007.04.010
Orem, 2010, Organic intermediates in the anaerobic biodegradation of coal to methane under laboratory conditions, Org. Geochem., 41, 997, 10.1016/j.orggeochem.2010.03.005
Oremland, 1982, Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments, Appl. Environ. Microbiol., 44, 1270, 10.1128/AEM.44.6.1270-1276.1982
Osborn, 2010, Chemical and isotopic tracers of the contribution of microbial gas in Devonian organic-rich shales and reservoir sandstones, northern Appalachian Basin, Appl. Geochem., 25, 456, 10.1016/j.apgeochem.2010.01.001
Papendick, 2011, Biogenic methane potential for Surat Basin, Queensland coal seams, Int. J. Coal Geol., 88, 123, 10.1016/j.coal.2011.09.005
Parkes, 2000, Recent studies on bacterial populations and processes in subseafloor sediments: a review, Hydrogeol. J., 8, 11, 10.1007/PL00010971
Passey, 2010, From oil-prone source rock to gas-producing shale reservoir – geologic and petrophysical characterization of unconventional shale-gas reservoirs, 1707
Pearson, 2012
Pedersen, 2000, Exploration of deep intraterrestrial microbial life: current perspectives, FEMS Microbiol. Lett., 185, 9, 10.1111/j.1574-6968.2000.tb09033.x
Peebles, 1980
Penner, 2010, Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures, Int. J. Coal Geol., 82, 81, 10.1016/j.coal.2010.02.002
Pfeiffer, R., Ulrich, G., 2010. Chemical amendments for the stimulation of biogenic gas generation in deposits of carbonaceous material. US Pat. App. 12/751,745.
Pohlman, 2009, Methane sources and production in the northern Cascadia margin gas hydrate system, Earth Planet. Sci. Lett., 287, 504, 10.1016/j.epsl.2009.08.037
Polman, 1994, Bioconversion of coal, lignin, and dimethoxybenzyl alcohol by Penicillium citrinum, J. Ind., 13, 292
Prince, 2010, Prokaryotic hydrocarbon degraders, 1669
Raskin, 1996, Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms, Appl. Environ. Microbiol., 62, 3847, 10.1128/AEM.62.10.3847-3857.1996
Raudsepp, 2016, The influence of hydrogeological disturbance and mining on coal seam microbial communities, Geobiology, 14, 163, 10.1111/gbi.12166
Reeburgh, 1977, Microbial methane consumption reactions and their effect on methane distributions in freshwater and marine environments, Limnol. Oceanogr., 22, 1, 10.4319/lo.1977.22.1.0001
Rice, 1981, Generation, accumulation, and resource potential of biogenic gas, Am. Assoc. Pet. Geol. Bull., 65, 5
Rice, 2008, Chemical and stable isotopic evidence for water/rock interaction and biogenic origin of coalbed methane, Fort Union Formation, Powder River Basin, Wyoming and Montana U.S.A, Int. J. Coal Geol., 76, 76, 10.1016/j.coal.2008.05.002
Ritter, 2015, Enhanced microbial coalbed methane generation: a review of research, commercial activity, and remaining challenges, Int. J. Coal Geol., 146, 28, 10.1016/j.coal.2015.04.013
Robbins, 2016, The effect of coal rank on biogenic methane potential and microbial composition, Int. J. Coal Geol., 154-155, 205, 10.1016/j.coal.2016.01.001
Rooney-varga, 1999, 65, 3056
Ross, 2007, Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs, Fuel, 86, 2696, 10.1016/j.fuel.2007.02.036
Ross, 2009, The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs, Mar. Pet. Geol., 26, 916, 10.1016/j.marpetgeo.2008.06.004
Rouquerolt, 1994, Recommendations for the characterization of porous solids, Pure Appl. Chem., 66, 1739, 10.1351/pac199466081739
Rowland, 1986, Microbial degradation of aromatic components of crude oils: a comparison of laboratory and field observations, Org. Geochem., 9, 153, 10.1016/0146-6380(86)90065-3
Roy, 2003, Modeling gas flow through microchannels and nanopores, J. Appl. Phys., 93, 4870, 10.1063/1.1559936
Savage, 2000, Mechanisms and kinetics models for hydrocarbon pyrolysis, J. Anal. Appl. Pyrolysis, 54, 109, 10.1016/S0165-2370(99)00084-4
Schettler, 1989, Gas storage and transport in Devonian shales, SPE Form. Eval., 4, 371, 10.2118/17070-PA
Schink, 1997, Energetics of syntrophic cooperation in methanogenic degradation, Microbiol. Mol. Biol. Rev., 61, 262, 10.1128/.61.2.262-280.1997
Schink, 2006, Syntrophism among Prokaryotes, Prokaryotes, 2, 309, 10.1007/0-387-30742-7_11
Schlegel, 2011, Comparison of fluid geochemistry and microbiology of multiple organic-rich reservoirs in the Illinois Basin, USA: evidence for controls on methanogenesis and microbial transport, Geochim. Cosmochim. Acta, 75, 1903, 10.1016/j.gca.2011.01.016
Schlegel, 2011, Constraining the timing of microbial methane generation in an organic-rich shale using noble gases, Illinois Basin, USA, Chem. Geol., 287, 27, 10.1016/j.chemgeo.2011.04.019
Schlegel, 2013, Extent and limits of biodegradation by in situ methanogenic consortia in shale and formation fluids, Appl. Geochem., 28, 172, 10.1016/j.apgeochem.2012.10.008
Schlömer, 1997, Experimental characterisation of the hydrocarbon sealing efficiency of cap rocks, Mar. Pet. Geol., 14, 565, 10.1016/S0264-8172(97)00022-6
Schoell, 1980, The hydrogen and carbon isotopic composition of methane from natural gases of various origins, Geochim. Cosmochim. Acta, 44, 649, 10.1016/0016-7037(80)90155-6
Scott, 1999, Improving coal gas recovery with microbially enhanced coalbed methane, Coalbed Methane Sci. Environ., 89
Scott, 2002, Hydrogeologic factors affecting gas content distribution in coal beds, Int. J. Coal Geol., 50, 363, 10.1016/S0166-5162(02)00135-0
Scott, 1994, Thermogenic and secondary biogenic gases, San Juan Basin Colorado and New Mexico - implications for coalbed, Am. Assoc. Pet. Geol. Bull., 78, 1186
Shimizu, 2007, Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan, Geobiology, 5, 423, 10.1111/j.1472-4669.2007.00123.x
Singh, 2013, Coal induced production of a rhamnolipid biosurfactant by Pseudomonas stutzeri, isolated from the formation water of Jharia coalbed, Bioresour. Technol., 128, 215, 10.1016/j.biortech.2012.10.127
Singh, 2012, Cultivation-independent analysis of archaeal and bacterial communities of the formation water in an Indian coal bed to enhance biotransformation of coal into methane, Appl. Microbiol. Biotechnol., 93, 1337, 10.1007/s00253-011-3778-1
Smith, 1996, Microbial origin of Australian coalbed methane, AAPG Bull. Am. Assoc. Pet. Geol., 80, 891
Solano-Acosta, 2007, Cleats and their relation to geologic lineaments and coalbed methane potential in Pennsylvanian coals in Indiana, Int. J. Coal Geol., 72, 187, 10.1016/j.coal.2007.02.004
Stams, 2009, Electron transfer in syntrophic communities of anaerobic bacteria and archaea, Nat. Rev. Microbiol., 7, 568, 10.1038/nrmicro2166
Stams, 2012, Syntrophic degradation of fatty acids by methanogenic communities, Adv. Biofuels
Strapoć, 2007, Characterization of the origin of coalbed gases in southeastern Illinois Basin by compound-specific carbon and hydrogen stable isotope ratios, Org. Geochem., 38, 267, 10.1016/j.orggeochem.2006.09.005
Strapoć, 2008, Methane-producing microbial community in a coal bed of the Illinois Basin, Appl. Environ., 74, 2424, 10.1128/AEM.02341-07
Strapoć, 2010, How specific microbial communities benefit the oil industry: significant contribution of methyl/methanol-utilising methanogenic pathway in a subsurface biogas environment, 211
Strapoć, 2011, Biogeochemistry of microbial coal-bed methane, Annu. Rev. Earth Planet. Sci., 39, 617, 10.1146/annurev-earth-040610-133343
Struchtemeyer, 2012, Bacterial communities associated with hydraulic fracturing fluids in thermogenic natural gas wells in North Central Texas, USA, FEMS Microbiol. Ecol., 81, 13, 10.1111/j.1574-6941.2011.01196.x
Struchtemeyer, 2011, Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells of the Barnett Shale, Appl. Environ. Microbiol., 77, 4744, 10.1128/AEM.00233-11
Struchtemeyer, 2012, A critical assessment of the efficacy of biocides used during the hydraulic fracturing process in shale natural gas wells, Int. Biodeterior. Biodegrad., 71, 15, 10.1016/j.ibiod.2012.01.013
Tarafa, 1987, Sediment slumps in the middle and lower eocene of deep sea drilling project holes 605 and 613: chemical detection by pyrolysis techniques, Init. Rep. DSDP, 661
Trembath, 2012
Ulrich, 2008, Active methanogenesis and acetate utilization in Powder River Basin coals, United States, Int. J. Coal Geol., 76, 25, 10.1016/j.coal.2008.03.006
United States Environmental Protection Agency, 2004, 463
Unsworth, 1989, Moisture in coal, Fuel, 68, 18, 10.1016/0016-2361(89)90005-7
Valentine, 2000, New perspectives on anaerobic methane oxidation, Environ. Microbiol., 2, 477, 10.1046/j.1462-2920.2000.00135.x
Vandenbroucke, 2007, Kerogen origin, evolution and structure, Org. Geochem., 38, 719, 10.1016/j.orggeochem.2007.01.001
Volkman, 1983, A geochemical reconstruction of oil generation in the Barrow Sub-basin of Western Australia, Geochim. Cosmochim. Acta, 47, 2091, 10.1016/0016-7037(83)90034-0
Waldron, 2007, Salinity constraints on subsurface archaeal diversity and methanogenesis in sedimentary rock rich in organic matter, Appl. Environ. Microbiol., 73, 4171, 10.1128/AEM.02810-06
Warwick, 2008, Biogenic origin of coalbed gas in the northern Gulf of Mexico Coastal Plain, USA, Int. J. Coal Geol., 76, 119, 10.1016/j.coal.2008.05.009
Wawrik, 2012, Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin, FEMS Microbiol. Ecol., 81, 26, 10.1111/j.1574-6941.2011.01272.x
Weimer, 1978, One carbon metabolism in methanogenic bacteria, Arch. Microbiol., 119, 49, 10.1007/BF00407927
Wellsbury, 1997, Deep marine biosphere fuelled by increasing organic matter availability during burial and heating, Nature, 388, 573, 10.1038/41544
Wenger, 2002, Control of hydrocarbon seepage intensity on level of biodegradation in sea bottom sediments, Org. Geochem., 33, 1277, 10.1016/S0146-6380(02)00116-X
Whelan, 1986, Maturity of organic matter and migration of hydrocarbons in two Alaskan North Slope wells, Org. Geochem., 10, 207, 10.1016/0146-6380(86)90024-0
Whiticar, 1990, A geochemical perspective of natural gas and atmospheric methane, 531
Whiticar, 1999, Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane, Chem. Geol., 161, 291, 10.1016/S0009-2541(99)00092-3
Whiticar, 1986, Methane oxidation in sediment and water column environments-isotope evidence, Org. Geochem., 10, 759, 10.1016/S0146-6380(86)80013-4
Whitman, 1998, Prokaryotes: the unseen majority, Proc. Natl. Acad. Sci. U. S. A., 95, 6578, 10.1073/pnas.95.12.6578
Whitman, 2006, The methanogenic bacteria, Prokaryotes, 3, 10.1007/0-387-30743-5_9
Widdel, 2010, Handbook of Hydrocarbon and Lipid Microbiology
Widdel, 2001, Anaerobic biodegradation of saturated and aromatic hydrocarbons, Curr. Opin. Biotechnol., 12, 259, 10.1016/S0958-1669(00)00209-3
Wiegel, 2006, An introduction to the family Clostridiaceae, Prokaryotes, 654, 10.1007/0-387-30744-3_20
Wolin, 1982, Hydrogen transfer in microbial communities, 323
Wuchter, 2013, Microbial diversity and methanogenic activity of antrim shale formation waters from recently fractured wells, Front. Microbiol., 4, 1, 10.3389/fmicb.2013.00367
Yang, 2014, Optimization models for shale gas water management, AICHE J., 60, 1, 10.1002/aic.14526
Zehnder, 1979, Methane formation and methane oxidation by methanogenic bacteria, J. Bacteriol., 137, 420, 10.1128/jb.137.1.420-432.1979
Zhang, 2012, Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems, Org. Geochem., 47, 120, 10.1016/j.orggeochem.2012.03.012
Zhang, 2013
Zhou, 2005, Noble gas tracing of groundwater/coalbed methane interaction in the San Juan Basin, USA, Geochim. Cosmochim. Acta, 69, 5413, 10.1016/j.gca.2005.06.027
Zinder, 1993, Physiological ecology of methanogens, Methanogenesis, 128, 10.1007/978-1-4615-2391-8_4