antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences

Nucleic Acids Research - Tập 39 Số suppl_2 - Trang W339-W346 - 2011
Marnix H. Medema1, Kai Blin2, Peter Cimermančič3, Victor de Jager4,5, Piotr Zakrzewski6, Michael A. Fischbach3, Tilmann Weber2, Eriko Takano7, Rainer Breitling8
1Department of Microbial Physiology, Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands.
2Univ Tubingen, Eberhard Karls University of Tubingen, Interfak Inst Mikrobiol & Infekt Med
3Univ Calif San Francisco, University of California San Francisco, University of California System, Dept Bioengn & Therapeut Sci
4Radboud Univ Nijmegen, Radboud University Nijmegen, Med Ctr, Nijmegen Ctr Mol Life Sci, Netherlands Bioinformat Ctr
5Wageningen Univ, Wageningen University & Research Center, Microbiol Lab
6University of Groningen
7Microbial Physiology
8Univ Glasgow, University of Glasgow, Coll Med Vet & Life Sci, Inst Mol Cell & Syst Biol

Tóm tắt

Từ khóa


Tài liệu tham khảo

Walsh, 2010, Natural products version 2.0: connecting genes to molecules, J. Am. Chem. Soc., 132, 2469, 10.1021/ja909118a

Starcevic, 2008, ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures, Nucleic Acids Res., 36, 6882, 10.1093/nar/gkn685

Anand, 2010, SBSPKS: Structure based sequence analysis of polyketide synthases, Nucleic Acids Res., 38, W487, 10.1093/nar/gkq340

Li, 2009, Automated genome mining for natural products, BMC Bioinformatics, 10, 185, 10.1186/1471-2105-10-185

de Jong, BAGEL2: Mining for bacteriocins in genomic data, Nucleic Acids Res., 38, W647, 10.1093/nar/gkq365

Mallika, 2010, Kernel based machine learning algorithm for the efficient prediction of type III polyketide synthase family of proteins, J. Integr. Bioinform, 7, 143, 10.1515/jib-2010-143

Khaldi, 2010, SMURF: genomic mapping of fungal secondary metabolite clusters, Fungal Genet. Biol., 47, 736, 10.1016/j.fgb.2010.06.003

Weber, 2009, CLUSEAN: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters, J. Biotechnol., 140, 13, 10.1016/j.jbiotec.2009.01.007

Delcher, 2007, Identifying bacterial genes and endosymbiont DNA with glimmer, Bioinformatics, 23, 673, 10.1093/bioinformatics/btm009

Majoros, 2004, TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders, Bioinformatics, 20, 2878, 10.1093/bioinformatics/bth315

Finn, 2010, The Pfam protein families database, Nucleic Acids Res., 38, D211, 10.1093/nar/gkp985

Letunic, 2009, SMART 6: Recent updates and new developments, Nucleic Acids Res., 37, D229, 10.1093/nar/gkn808

Yadav, 2009, Towards prediction of metabolic products of polyketide synthases: An in silico analysis, PLoS Comput. Biol., 5, e1000351, 10.1371/journal.pcbi.1000351

Ansari, 2008, In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites, BMC Bioinformatics, 9, 454, 10.1186/1471-2105-9-454

Rausch, 2007, Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution, BMC Evol. Biol., 7, 78, 10.1186/1471-2148-7-78

Yadav, 2003, Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases, J. Mol. Biol., 328, 335, 10.1016/S0022-2836(03)00232-8

Minowa, 2007, Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes, J. Mol. Biol., 368, 1500, 10.1016/j.jmb.2007.02.099

Röttig, 2011, NRPSpredictor2: A web server for predicting NRPS adenylation domain specificity, Nucleic Acids Res., 10.1093/nar/gkr323

Rausch, 2005, Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs), Nucleic Acids Res., 33, 5799, 10.1093/nar/gki885

Weininger, 1988, SMILES, a chemical language and information system. 1. introduction to methodology and encoding rules, J. Chem. Inf. Comput. Sci., 28, 31, 10.1021/ci00057a005

Li, 2003, OrthoMCL: Identification of ortholog groups for eukaryotic genomes, Genome Res., 13, 2178, 10.1101/gr.1224503

Edgar, 2004, MUSCLE: Multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 32, 1792, 10.1093/nar/gkh340

Price, 2010, FastTree 2–approximately maximum-likelihood trees for large alignments, PLoS One, 5, e9490, 10.1371/journal.pone.0009490

Stover, 2010, TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses, BMC Bioinformatics, 11, 7, 10.1186/1471-2105-11-7

Fischbach, 2008, The evolution of gene collectives: how natural selection drives chemical innovation, Proc. Natl Acad. Sci. USA, 105, 4601, 10.1073/pnas.0709132105

Donadio, 2005, Comparative analysis and insights into the evolution of gene clusters for glycopeptide antibiotic biosynthesis, Mol. Genet. Genomics, 274, 40, 10.1007/s00438-005-1156-3

Camacho, 2009, BLAST+: Architecture and applications, BMC Bioinformatics, 10, 421, 10.1186/1471-2105-10-421

Rutherford, 2000, Artemis: Sequence visualization and annotation, Bioinformatics, 16, 944, 10.1093/bioinformatics/16.10.944

Medema, 2011, Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms, Nat. Rev. Microbiol., 9, 131, 10.1038/nrmicro2478