A survey and taxonomy on workload scheduling and resource provisioning in hybrid clouds
Tóm tắt
Hybrid cloud is a cost-efficient way to address the problem of insufficient resources for meeting the peak demand of its users for a service provider, which elastically scales up or down the cloud capability based on demand by combining local infrastructures and one or more public clouds. While, the combination introduces new challenges that must necessarily be addressed before adoption. To address these new challenges for improving the resource efficiency in hybrid clouds, much work tried to solve the decision problem of workload scheduling, resource provisioning, or both, where workload scheduling answers how to efficiently map workloads to available resources, and resource provisioning addresses how to optimally provision resources based on demand. In this article, we proposed a comprehensive taxonomy of workload scheduling and resource provisioning in hybrid cloud environments to investigate and classify 146 related research articles. Based on the investigation, we summarized the challenges which have not been addressed by these researches, and discussed future directions and trends in the area.
Tài liệu tham khảo
Alibaba Cloud: an integrated suite of cloud products, services and solutions. https://www.alibabacloud.com/ (2018). Accessed 18 Jan 2020
Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/ (2018). Accessed 18 Jan 2020
Abbes, W., Kechaou, Z., Alimi, A.M.: A new placement optimization approach in hybrid cloud based on genetic algorithm. In: 2016 IEEE 13th International Conference on e-Business Engineering (ICEBE), pp. 226–231 (2016). https://doi.org/10.1109/ICEBE.2016.046
Abdi, S., PourKarimi, L., Ahmadi, M., Zargari, F.: Cost minimization for deadline-constrained bag-of-tasks applications in federated hybrid clouds. Future Gener. Comput. Syst. 71, 113–128 (2017). https://doi.org/10.1016/j.future.2017.01.036
Adam, O., Lee, Y.C., Zomaya, A.Y.: Stochastic resource provisioning for containerized multi-tier web services in clouds. IEEE Trans. Parallel Distrib. Syst. 28(7), 2060–2073 (2017). https://doi.org/10.1109/TPDS.2016.2639009
Ahene, E., Acheampong, K.N., Xu, H.: Fault-tolerant resource provisioning with deadline-driven optimization in hybrid clouds. Int. J. Adv. Comput. Sci. Appl. 7(12), 379–389 (2016)
Ahn, Y., Choi, J., Jeong, S., Kim, Y.: Auto-scaling method in hybrid cloud for scientific applications. In: The 16th Asia–Pacific Network Operations and Management Symposium, pp. 1–4 (2014). https://doi.org/10.1109/APNOMS.2014.6996527
Ahn, Y., Kim, Y.: Auto-scaling of virtual resources for scientific workflows on hybrid clouds. In: Proceedings of the 5th ACM Workshop on Scientific Cloud Computing, ScienceCloud ’14, pp. 47–52. ACM, New York (2014). https://doi.org/10.1145/2608029.2608036
Ahn, Y., Kim, Y.: VM auto-scaling for workflows in hybrid cloud computing. In: 2014 International Conference on Cloud and Autonomic Computing, pp. 237–240 (2014). https://doi.org/10.1109/ICCAC.2014.34
Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.: Elasticity in cloud computing: state of the art and research challenges. IEEE Trans. Serv. Comput. PP(99), 1–1 (2017). https://doi.org/10.1109/TSC.2017.2711009
Altmann, J., Kashef, M.M.: Cost model based service placement in federated hybrid clouds. Future Gener. Comput. Syst. 41, 79–90 (2014). https://doi.org/10.1016/j.future.2014.08.014
Amato, A., Venticinque, S.: Multiobjective optimization for brokering of multicloud service composition. ACM Trans. Internet Technol. 16(2), 13:1–13:20 (2016)
Arantes, L., Friedman, R., Marin, O., Sens, P.: Probabilistic Byzantine tolerance scheduling in hybrid cloud environments. In: Proceedings of the 18th International Conference on Distributed Computing and Networking, ICDCN ’17, pp. 2:1–2:10. ACM, New York (2017). https://doi.org/10.1145/3007748.3007770
Arlitt, M., Jin, T.: A workload characterization study of the 1998 World Cup Web site. IEEE Netw. 14(3), 30–37 (2000). https://doi.org/10.1109/65.844498
Balagoni, Y., Rao, R.R.: A cost-effective SLA-aware scheduling for hybrid cloud environment. In: 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–7 (2016). https://doi.org/10.1109/ICCIC.2016.7919621
Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pp. 164–177. ACM, New York (2003)
Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28(5), 755–768 (2012). Special Section: Energy efficiency in large-scale distributed systems
Ben-Yehuda, O.A., Schuster, A., Sharov, A., Silberstein, M., Iosup, A.: ExPERT: Pareto-efficient task replication on grids and a cloud. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium, pp. 167–178 (2012)
Bhosale, A.S., Bandari, S.D.: Survey on resource provisioning of hybrid cloud with Aneka. Int. Adv. Res. J. Sci. Eng. Technol. Spec. Issue 4(11), 38–41 (2017)
Bicer, T., Chiu, D., Agrawal, G.: Time and cost sensitive data-intensive computing on hybrid clouds. In: 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pp. 636–643 (2012). https://doi.org/10.1109/CCGrid.2012.95
Bittencourt, L.F., Madeira, E.R.M.: HCOC: a cost optimization algorithm for workflow scheduling in hybrid clouds. J. Internet Serv. Appl. 2(3), 207–227 (2011). https://doi.org/10.1007/s13174-011-0032-0
Bittencourt, L.F., Madeira, E.R.M., Fonseca, N.L.S.D.: Scheduling in hybrid clouds. IEEE Commun. Mag. 50(9), 42–47 (2012)
Bittencourt, L.F., Senna, C.R., Madeira, E.R.M.: Scheduling service workflows for cost optimization in hybrid clouds. In: 2010 International Conference on Network and Service Management, pp. 394–397 (2010). https://doi.org/10.1109/CNSM.2010.5691241
Björkqvist, M., Chen, L.Y., Binder, W.: Cost-driven service provisioning in hybrid clouds. In: 2012 Fifth IEEE International Conference on Service-Oriented Computing and Applications (SOCA), pp. 1–8 (2012). https://doi.org/10.1109/SOCA.2012.6449447
Botta, A., de Donato, W., Persico, V., Pescapé, A.: Integration of integration of cloud computing and Internet of Things: a survey. Future Gener. Comput. Syst. 56, 684–700 (2016). https://doi.org/10.1016/j.future.2015.09.021
Boutaba, R., da Fonseca, N.L.: Cloud architectures, networks, services, and management. In: Cloud Services, Networking, and Management, pp. 1–22. Wiley, Hoboken (2015)
Buyya, R., Barreto, D.: Multi-cloud resource provisioning with Aneka: a unified and integrated utilisation of Microsoft Azure and Amazon EC2 instances. In: 2015 International Conference on Computing and Network Communications (CoCoNet), pp. 216–229 (2015). https://doi.org/10.1109/CoCoNet.2015.7411190
Calheiros, R., Buyya, R.: Cost-effective provisioning and scheduling of deadline-constrained applications in hybrid clouds. In: X. Wang, I. Cruz, A. Delis, G. Huang (eds) Web Information Systems Engineering—WISE 2012. Lecture Notes in Computer Science, vol. 7651, pp. 171–184. Springer, Berlin (2012)
Calheiros, R.N., Vecchiola, C., Karunamoorthy, D., Buyya, R.: The Aneka Platform and QoS-driven resource provisioning for elastic applications on hybrid clouds. Future Gener. Comput. Syst. 28(6), 861–870 (2012)
Cao, Y., Lu, L., Yu, J., Qian, S., Zhu, Y., Li, M., Cao, J., Wang, Z., Li, J., Xue, G.: Online cost-aware service requests scheduling in hybrid clouds for cloud bursting. In: Bouguettaya, A., Gao, Y., Klimenko, A., Chen, L., Zhang, X., Dzerzhinskiy, F., Jia, W., Klimenko, S.V., Li, Q. (eds.) Web Information Systems Engineering—WISE 2017, pp. 259–274. Springer, Cham (2017)
Caron, E., de Assunção, M.D.: Multi-criteria malleable task management for hybrid-cloud platforms. In: 2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech), pp. 326–333 (2016). https://doi.org/10.1109/CloudTech.2016.7847717
Champati, J.P., Liang, B.: One-restart algorithm for scheduling and offloading in a hybrid cloud. In: 2015 IEEE 23rd International Symposium on Quality of Service (IWQoS), pp. 31–40 (2015). https://doi.org/10.1109/IWQoS.2015.7404699
Chang, Y.S., Fan, C.T., Sheu, R.K., Jhu, S.R., Yuan, S.M.: An agent-based workflow scheduling mechanism with deadline constraint on hybrid cloud environment. Int. J. Commun. Syst. 31(1), e3401 (2018). https://doi.org/10.1002/dac.3401
Charrada, F.B., Tata, S.: An efficient algorithm for the bursting of service-based applications in hybrid clouds. IEEE Trans. Serv. Comput. 9(3), 357–367 (2016). https://doi.org/10.1109/TSC.2015.2396076
Charrada, F.B., Tebourski, N., Tata, S., Moalla, S.: Approximate placement of service-based applications in hybrid clouds. In: 2012 IEEE 21st International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 161–166 (2012). https://doi.org/10.1109/WETICE.2012.76
Choi, J., Ahn, Y., Kim, S., Kim, Y., Choi, J.: VM auto-scaling methods for high throughput computing on hybrid infrastructure. Clust. Comput. 18(3), 1063–1073 (2015). https://doi.org/10.1007/s10586-015-0462-8
Choi, J., Kim, S., Adufu, T., Hwang, S., Kim, Y.: A job dispatch optimization method on cluster and cloud for large-scale high-throughput computing service. In: 2015 International Conference on Cloud and Autonomic Computing, pp. 283–290 (2015). https://doi.org/10.1109/ICCAC.2015.42
Choi, J., Kim, Y.: An adaptive resource provisioning method using job history learning technique in hybrid infrastructure. In: 2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W), pp. 72–77 (2016). https://doi.org/10.1109/FAS-W.2016.27
Choi, J., Kim, Y.: Adaptive resource provisioning method using application-aware machine learning based on job history in heterogeneous infrastructures. Clust. Comput. 20(4), 3537–3549 (2017). https://doi.org/10.1007/s10586-017-1148-1
Chopra, N., Singh, S.: Deadline and cost based workflow scheduling in hybrid cloud. In: 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 840–846 (2013). https://doi.org/10.1109/ICACCI.2013.6637285
Chopra, N., Singh, S.: HEFT based workflow scheduling algorithm for cost optimization within deadline in hybrid clouds. In: 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), pp. 1–6 (2013). https://doi.org/10.1109/ICCCNT.2013.6726627
Chopra, N., Singh, S.: Survey on scheduling in hybrid clouds. In: Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT), pp. 1–6 (2014)
Chu, H.Y., Simmhan, Y.: Cost-efficient and resilient job life-cycle management on hybrid clouds. In: 2014 IEEE 28th International Parallel and Distributed Processing Symposium, pp. 327–336 (2014)
Chunlin, L., Jianhang, T., Youlong, L.: Distributed QoS-aware scheduling optimization for resource-intensive mobile application in hybrid cloud. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-1171-2
Chunlin, L., Layuan, L.: A distributed multiple dimensional QoS constrained resource scheduling optimization policy in computational grid. J. Comput. Syst. Sci. 72(4), 706–726 (2006). https://doi.org/10.1016/j.jcss.2006.01.003
Chunlin, L., LaYuan, L.: Optimal scheduling across public and private clouds in complex hybrid cloud environment. Inf. Syst. Front. 19(1), 1–12 (2017). https://doi.org/10.1007/s10796-015-9581-2
Chunlin, L., Min, Z., Youlong, L.: Elastic resource provisioning in hybrid mobile cloud for computationally intensive mobile applications. J. Supercomput. 73(9), 3683–3714 (2017). https://doi.org/10.1007/s11227-017-1965-2
Clemente-Castelló, F.J., Nicolae, B., Mayo, R., Fernandez, J.C.: Performance model of MapReduce iterative applications for hybrid cloud bursting. IEEE Trans. Parallel Distrib. Syst. PP(99), 1–1 (2018). https://doi.org/10.1109/TPDS.2018.2802932
Clemente-Castelló, F.J., Nicolae, B., Rafique, M.M., Mayo, R., Fernández, J.C.: Evaluation of data locality strategies for hybrid cloud bursting of iterative MapReduce. In: Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid ’17, pp. 181–185. IEEE Press, Piscataway (2017). https://doi.org/10.1109/CCGRID.2017.96
D’Agostino, D., Galizia, A., Clematis, A., Mangini, M., Porro, I., Quarati, A.: A QoS-aware broker for hybrid clouds. Computing 95(1), 89–109 (2013). https://doi.org/10.1007/s00607-012-0254-4
Dastjerdi, A.V., Buyya, R.: Fog computing: helping the Internet of Things realize its potential. Computer 49(8), 112–116 (2016). https://doi.org/10.1109/MC.2016.245
Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a survey. IEEE Commun. Surv. Tutor. 18(1), 732–794 (2016). https://doi.org/10.1109/COMST.2015.2481183
de Assunção, M.D., di Costanzo, A., Buyya, R.: A cost–benefit analysis of using cloud computing to extend the capacity of clusters. Clust. Comput. 13(3), 335–347 (2010)
Delamare, S., Fedak, G., Kondo, D., Lodygensky, O.: SpeQuloS: a QoS service for hybrid and elastic computing infrastructures. Clust. Comput. 17(1), 79–100 (2014). https://doi.org/10.1007/s10586-013-0283-6
Delimitrou, C., Kozyrakis, C.: Paragon: QoS-aware scheduling for heterogeneous datacenters. In: Proceedings of the Eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’13, pp. 77–88. ACM, New York (2013). https://doi.org/10.1145/2451116.2451125
Delimitrou, C., Kozyrakis, C.: QoS-aware scheduling in heterogeneous datacenters with Paragon. ACM Trans. Comput. Syst. 31(4), 12:1–12:34 (2013). https://doi.org/10.1145/2556583
Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and QoS-aware cluster management. In: Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’14, pp. 127–144. ACM, New York (2014). https://doi.org/10.1145/2541940.2541941
Delamare, S., Fedak, G., Kondo, D., Lodygensky, O.: SpeQuloS: A QoS service for BoT applications using best effort distributed computing infrastructures. In: Proceedings of the 21st International Symposium on High-Performance Parallel and Distributed Computing, HPDC ’12, pp. 173–186. ACM, New York (2012). https://doi.org/10.1145/2287076.2287106
den Bossche, R.V., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling in hybrid IaaS clouds for deadline constrained workloads. In: 2010 IEEE 3rd International Conference on Cloud Computing, pp. 228–235 (2010). https://doi.org/10.1109/CLOUD.2010.58
den Bossche, R.V., Vanmechelen, K., Broeckhove, J.: Cost-efficient scheduling heuristics for deadline constrained workloads on hybrid clouds. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science, pp. 320–327 (2011). https://doi.org/10.1109/CloudCom.2011.50
den Bossche, R.V., Vanmechelen, K., Broeckhove, J.: Online cost-efficient scheduling of deadline-constrained workloads on hybrid clouds. Future Gener. Comput. Syst. pp. 973–985. (2013). https://doi.org/10.1016/j.future.2012.12.012. Special Section: Utility and Cloud Computing
Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing: architecture, applications, and approaches. Wirel. Commun. Mob. Comput. 13(18), 1587–1611 (2013). https://doi.org/10.1002/wcm.1203
Ditarso, P., Figueiredo, F., Maia, D., Brasileiro, F., Coelho, A.: On the planning of a hybrid IT infrastructure. In: NOMS 2008—2008 IEEE Network Operations and Management Symposium, pp. 496–503 (2008). https://doi.org/10.1109/NOMS.2008.4575173
Docker: build, manage and secure your apps anywhere. https://www.docker.com/ (2018). Accessed 18 Jan 2020
Duan, R., Prodan, R.: Cooperative scheduling of bag-of-tasks workflows on hybrid clouds. In: 2014 IEEE 6th International Conference on Cloud Computing Technology and Science, pp. 439–446 (2014). https://doi.org/10.1109/CloudCom.2014.58
Duan, R., Prodan, R., Li, X.: Multi-objective game theoretic scheduling of bag-of-tasks workflows on hybrid clouds. IEEE Trans. Cloud Comput. 2(1), 29–42 (2014). https://doi.org/10.1109/TCC.2014.2303077
Engineering Village. https://www.engineeringvillage.com/ (2018). Accessed 18 Jan 2020
Fadel, A.S., Fayoumi, A.G.: Cloud resource provisioning and bursting approaches. In: 2013 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 59–64 (2013)
Fan, C.T., Wang, W.J., Chang, Y.S.: Agent-based service migration framework in hybrid cloud. In: 2011 IEEE International Conference on High Performance Computing and Communications, pp. 887–892 (2011). https://doi.org/10.1109/HPCC.2011.127
Fan, Y., Liang, Q., Chen, Y., Yan, X., Hu, C., Yao, H., Liu, C., Zeng, D.: Executing time and cost-aware task scheduling in hybrid cloud using a modified DE algorithm. In: Li, K., Li, J., Liu, Y., Castiglione, A. (eds.) Computational Intelligence and Intelligent Systems, pp. 74–83. Springer, Singapore (2016)
Fang, S., Kanagavelu, R., Lee, B.S., Foh, C.H., Aung, K.M.M.: Power-efficient virtual machine placement and migration in data centers. In: 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, pp. 1408–1413 (2013)
Faniyi, F., Bahsoon, R.: A systematic review of service level management in the cloud. ACM Comput. Surv. 48(3), 43:1–43:27 (2015). https://doi.org/10.1145/2843890
Genez, T.A.L., Bittencourt, L., Fonseca, N., Madeira, E.: Estimation of the available bandwidth in inter-cloud links for task scheduling in hybrid clouds. IEEE Trans. Cloud Comput. PP(99), 1–1 (2015). https://doi.org/10.1109/TCC.2015.2469650
Genez, T.A.L., Bittencourt, L.F., Madeira, E.R.M.: On the performance-cost tradeoff for workflow scheduling in hybrid clouds. In: Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing, UCC ’13, pp. 411–416. IEEE Computer Society, Washington, DC (2013). https://doi.org/10.1109/UCC.2013.82
Goder, A., Spiridonov, A., Wang, Y.: Bistro: scheduling data-parallel jobs against live production systems. In: Proceedings of the 2015 USENIX Conference on Usenix Annual Technical Conference, USENIX ATC ’15, pp. 459–471. USENIX Association, Berkeley (2015)
Grewal, R.K., Pateriya, P.K.: Chap. 5. In: A Rule-Based Approach for Effective Resource Provisioning in Hybrid Cloud Environment, pp. 41–57. Springer, Berlin (2013)
Google Scholar. https://scholar.google.com/ (2018). Accessed 18 Jan 2020
Guo, T., Sharma, U., Shenoy, P., Wood, T., Sahu, S.: Cost-aware cloud bursting for enterprise applications. ACM Trans. Internet Technol. 13(3), 10:1–10:24 (2014)
Guo, T., Sharma, U., Wood, T., Sahu, S., Shenoy, P.: Seagull: intelligent cloud bursting for enterprise applications. In: Proceedings of the 2012 USENIX Conference on Annual Technical Conference, USENIX ATC’12, pp. 33–33. USENIX Association, Berkeley (2012)
Hajjat, M., Sun, X., Sung, Y.W.E., Maltz, D., Rao, S., Sripanidkulchai, K., Tawarmalani, M.: Cloudward bound: planning for beneficial migration of enterprise applications to the cloud. In: Proceedings of the ACM SIGCOMM 2010 Conference, SIGCOMM ’10, pp. 243–254. ACM, New York (2010). https://doi.org/10.1145/1851182.1851212
Hoenisch, P., Hochreiner, C., Schuller, D., Schulte, S., Mendling, J., Dustdar, S.: Cost-efficient scheduling of elastic processes in hybrid clouds. In: 2015 IEEE 8th International Conference on Cloud Computing, pp. 17–24 (2015). https://doi.org/10.1109/CLOUD.2015.13
Hoff, T.: Latency is everywhere and it costs you sales—how to crush it. http://highscalability.com/blog/2009/7/25/latency-is-everywhere-and-it-costs-you-sales-how-to-crush-it.html (2009)
HoseinyFarahabady, M., Lee, Y., Zomaya, A.: Randomized approximation scheme for resource allocation in hybrid-cloud environment. J. Supercomput. 69(2), 576–592 (2014)
HoseinyFarahabady, M., Lee, Y.C., Zomaya, A.: Pareto-optimal cloud bursting. IEEE Trans. Parallel Distrib. Syst. 25(10), 2670–2682 (2014)
HoseinyFarahabady, M., Samani, H., Leslie, L., Lee, Y.C., Zomaya, A.: Handling uncertainty: Pareto-efficient BoT scheduling on hybrid clouds. In: 2013 42nd International Conference on Parallel Processing (ICPP), pp. 419–428 (2013)
Hwang, J.: Computing resource transformation, consolidation and decomposition in hybrid clouds. In: 2015 11th International Conference on Network and Service Management (CNSM), pp. 144–152 (2015). https://doi.org/10.1109/CNSM.2015.7367350
Hwang, J.: Toward beneficial transformation of enterprise workloads to hybrid clouds. IEEE Trans. Netw. Serv. Manag. 13(2), 295–307 (2016). https://doi.org/10.1109/TNSM.2016.2541120
Iosup, A., Epema, D.: Grid computing workloads. IEEE Internet Comput. 15(2), 19–26 (2011)
Jackson, K.R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J., Wasserman, H.J., Wright, N.J.: Performance analysis of high performance computing applications on the Amazon Web Services Cloud. In: 2010 IEEE Second International Conference on Cloud Computing Technology and Science, pp. 159–168 (2010)
Javadi, B., Abawajy, J., Buyya, R.: Failure-aware resource provisioning for hybrid Cloud infrastructure. J. Parallel Distrib. Comput. 72(10), 1318–1331 (2012). https://doi.org/10.1016/j.jpdc.2012.06.012
Javadi, B., Abawajy, J., Sinnott, R.O.: Hybrid Cloud resource provisioning policy in the presence of resource failures. In: 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, pp. 10–17 (2012). https://doi.org/10.1109/CloudCom.2012.6427521
Jha, R.S., Gupta, P.: Power aware resource allocation policy for hybrid cloud. In: 2015 Third International Conference on Image Information Processing (ICIIP), pp. 336–341 (2015). https://doi.org/10.1109/ICIIP.2015.7414791
Jiang, W.Z., Sheng, Z.Q.: A new task scheduling algorithm in hybrid cloud environment. In: 2012 International Conference on Cloud and Service Computing (CSC), pp. 45–49 (2012)
Juan-Verdejo, A., Baars, H.: Decision support for partially moving applications to the cloud: the example of business intelligence. In: Proceedings of the 2013 International Workshop on Hot Topics in Cloud Services, HotTopiCS ’13, pp. 35–42. ACM, New York (2013). https://doi.org/10.1145/2462307.2462316
Kailasam, S., Dhawalia, P., Balaji, S.J., Iyer, G., Dharanipragada, J.: Extending MapReduce across Clouds with BStream. IEEE Trans. Cloud Comput. 2(3), 362–376 (2014). https://doi.org/10.1109/TCC.2014.2316810
Kailasam, S., Gnanasambandam, N., Dharanipragada, J., Sharma, N.: Optimizing service level agreements for autonomic cloud bursting schedulers. In: 2010 39th International Conference on Parallel Processing Workshops, pp. 285–294 (2010). https://doi.org/10.1109/ICPPW.2010.54
Kailasam, S., Gnanasambandam, N., Dharanipragada, J., Sharma, N.: Optimizing ordered throughput using autonomic cloud bursting schedulers. IEEE Trans. Softw. Eng. 39(11), 1564–1581 (2013). https://doi.org/10.1109/TSE.2013.26
Kang, H., Koh, J., Kim, Y., Hahm, J.: A SLA driven VM auto-scaling method in hybrid cloud environment. In: 2013 15th Asia–Pacific Network Operations and Management Symposium (APNOMS), pp. 1–6 (2013)
Kang, X., Zhang, H., Jiang, G., Chen, H., Meng, X., Yoshihira, K.: Measurement, modeling, and analysis of internet video sharing site workload: a case study. In: IEEE International Conference on Web Services, 2008. ICWS ’08, pp. 278–285 (2008)
Kaviani, N., Wohlstadter, E., Lea, R.: MANTICORE: a framework for partitioning software services for hybrid cloud. In: 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, pp. 333–340 (2012). https://doi.org/10.1109/CloudCom.2012.6427541
Kaviani, N., Wohlstadter, E., Lea, R.: Partitioning of web applications for hybrid cloud deployment. J. Internet Serv. Appl. 5(1), 14 (2014). https://doi.org/10.1186/s13174-014-0014-0
Kim, S., Won, J., Han, H., Eom, H., Yeom, H.Y.: Improving Hadoop performance in intercloud environments. SIGMETRICS Perform. Eval. Rev. 39(3), 107–109 (2011). https://doi.org/10.1145/2160803.2160873
Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: KVM: the Linux virtual machine monitor. In: Proceedings of the Linux Symposium, pp. 225–230 (2007)
Ko, S.Y., Jeon, K., Morales, R.: The HybrEx model for confidentiality and privacy in cloud computing. In: Proceedings of the 3rd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’11, p. 8. USENIX Association, Berkeley (2011)
Kondo, D., Javadi, B., Iosup, A., Epema, D.: The failure trace archive: enabling comparative analysis of failures in diverse distributed systems. In: 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pp. 398–407 (2010). https://doi.org/10.1109/CCGRID.2010.71
Koutsandria, G., Skevakis, E., Sayegh, A.A., Koutsakis, P.: Can everybody be happy in the cloud? Delay, profit and energy-efficient scheduling for cloud services. J. Parallel Distrib. Comput. 96(Supplement C), 202–217 (2016). https://doi.org/10.1016/j.jpdc.2016.05.013
Labba, C., Saoud, N.B.B., Dugdale, J.: A predictive approach for the efficient distribution of agent-based systems on a hybrid-cloud. Future Gener. Comput. Syst. 86, 750–764 (2018). https://doi.org/10.1016/j.future.2017.10.053
Lee, Y.C., Lian, B.: Cloud bursting scheduler for cost efficiency. In: 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), pp. 774–777 (2017). https://doi.org/10.1109/CLOUD.2017.112
Lee, Y.C., Zomaya, A.Y.: Rescheduling for reliable job completion with the support of clouds. Future Gener. Comput. Syst. 26(8), 1192–1199 (2010). https://doi.org/10.1016/j.future.2010.02.010
Leena, V.A., Ajeena Beegom, A.S., Rajasree, M.S.: Genetic algorithm based bi-objective task scheduling in hybrid cloud platform. Int. J. Comput. Theory Eng. 8(1), 7–13 (2016). https://doi.org/10.7763/IJCTE.2016.V8.1012
Leitner, P., Rostyslav, Z., Gambi, A., Dustdar, S.: A framework and Middleware for application-level cloud bursting on top of infrastructure-as-a-service clouds. In: Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing, UCC ’13, pp. 163–170. IEEE Computer Society, Washington, DC (2013). https://doi.org/10.1109/UCC.2013.39
Lent, R.: Evaluating the cooling and computing energy demand of a datacentre with optimal server provisioning. Future Gener. Comput. Syst. 57, 1–12 (2016). https://doi.org/10.1016/j.future.2015.10.008
Li, C., Li, L.: Efficient market strategy based optimal scheduling in hybrid cloud environments. Wirel. Pers. Commun. 83(1), 581–602 (2015). https://doi.org/10.1007/s11277-015-2410-6
Li, C., Li, L.: Hierarchical scheduling optimization scheme in hybrid cloud computing environments. J. Circuits Syst. Comput. 24(08) (2015). https://doi.org/10.1142/S021812661550111X
Li, C., Li, L.: Hybrid cloud scheduling method for cloud bursting. Fundam. Inf. 138(4), 435–455 (2015). https://doi.org/10.3233/FI-2015-1220
Li, C., Yan, X., Li, L.: Agents collaboration-based service provisioning strategy for large enterprise business in hybrid cloud. Trans. Emerg. Telecommun. Technol. 28(3) (2017). https://doi.org/10.1002/ett.2965
Li, C., Zhang, J., Chen, Y., Li, L.: Efficient QoS aware two-layer service allocation in hybrid mobile cloud. Autom. Softw. Eng. 25(3), 569–593 (2018). https://doi.org/10.1007/s10515-018-0233-x
Li, H., Zhong, L., Liu, J., Li, B., Xu, K.: Cost-effective partial migration of VoD services to content clouds. In: 2011 IEEE 4th International Conference on Cloud Computing, pp. 203–210 (2011). https://doi.org/10.1109/CLOUD.2011.41
Li, S., Zhou, Y., Jiao, L., Yan, X., Wang, X., Lyu, M.T.: Towards operational cost minimization in hybrid clouds for dynamic resource provisioning with delay-aware optimization. IEEE Trans. Serv. Comput. 8(3), 398–409 (2015)
Li, Z., Kihl, M., Lu, Q., Andersson, J.A.: Performance overhead comparison between hypervisor and container based virtualization. In: 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), pp. 955–962 (2017). https://doi.org/10.1109/AINA.2017.79
Lifka, D.A.: The ANL/IBM SP scheduling system. In: Job Scheduling Strategies for Parallel Processing: IPPS ’95 Workshop Santa Barbara, CA, USA, April 25, 1995 Proceedings, pp. 295–303. Springer, Berlin (1995)
Lijun, X., Chunlin, L.: Dynamic service provisioning and selection for satisfying cloud applications and cloud providers in hybrid cloud. Int. J. Coop. Inf. Syst. 26(04), 1750005 (2017). https://doi.org/10.1142/S0218843017500058
Lilienthal, M.: A decision support model for cloud bursting. Bus. Inf. Syst. Eng. 5(2), 71–81 (2013). https://doi.org/10.1007/s12599-013-0257-5
Lin, B., Guo, W., Lin, X.: Online optimization scheduling for scientific workflows with deadline constraint on hybrid clouds. Concurr. Comput. Pract. Exp. 28(11), 3079–3095 (2016). https://doi.org/10.1002/cpe.3582
Liu, F., Luo, B., Niu, Y.: Cost-effective service provisioning for hybrid cloud applications. Mob. Netw. Appl. 22(2), 153–160 (2017). https://doi.org/10.1007/s11036-016-0738-0
Liu, Y., Li, C., Yang, Z., Chen, Y., Xu, L.: Research on cost-optimal algorithm of multi-QoS constraints for task scheduling in hybrid-cloud. J. Softw. Eng. 33–49 (2015)
Liu, Z., Li, C., Wu, W., Jia, R.: A hierarchical approach for resource allocation in hybrid cloud environments. Wirel. Netw. (2016). https://doi.org/10.1007/s11276-016-1416-7
Lu, P., Sun, Q., Wu, K., Zhu, Z.: Distributed online hybrid cloud management for profit-driven multimedia cloud computing. IEEE Trans. Multimed. 17(8), 1297–1308 (2015)
Luong, N.C., Wang, P., Niyato, D., Wen, Y., Han, Z.: Resource management in cloud networking using economic analysis and pricing models: a survey. IEEE Commun. Surv. Tutor. 19(2), 954–1001 (2017). https://doi.org/10.1109/COMST.2017.2647981
Madni, S.H.H., Latiff, M.S.A., Coulibaly, Y., Abdulhamid, S.M.: Resource scheduling for infrastructure as a service (IaaS) in cloud computing: challenges and opportunities. J. Netw. Comput. Appl. 68(Supplement C), 173–200 (2016)
Maheshwari, K., Jung, E.S., Meng, J., Morozov, V., Vishwanath, V., Kettimuthu, R.: Workflow performance improvement using model-based scheduling over multiple clusters and clouds. Future Gener. Comput. Syst. 54, 206–218 (2016). https://doi.org/10.1016/j.future.2015.03.017
Makris, P., Skoutas, D.N., Rizomiliotis, P., Skianis, C.: A user-oriented, customizable infrastructure sharing approach for hybrid cloud computing environments. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science, pp. 432–439 (2011). https://doi.org/10.1109/CloudCom.2011.64
Malawski, M., Figiela, K., Nabrzyski, J.: Cost minimization for computational applications on hybrid cloud infrastructures. Future Gener. Comput. Syst. 29(7), 1786–1794 (2013). https://doi.org/10.1016/j.future.2013.01.004
Manikandan, M., Suguna, M.: A survey on temporal task scheduling for profit maximization in hybrid clouds. Int. J. Innov. Adv. Comput. Sci. 6(1), 20–24 (2017)
Mao, M., Humphrey, M.: A performance study on the VM startup time in the cloud. In: 2012 IEEE Fifth International Conference on Cloud Computing, pp. 423–430 (2012). https://doi.org/10.1109/CLOUD.2012.103
Mao, X., Li, C., Yan, W., Du, S.: Optimal scheduling algorithm of MapReduce tasks based on QoS in the hybrid cloud. In: 2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pp. 119–124 (2016). https://doi.org/10.1109/PDCAT.2016.038
Marcu, O.C., Negru, C., Pop, F.: Dynamic scheduling in real time with budget constraints in hybrid clouds. In: Altmann, J., Silaghi, G.C., Rana, O.F. (eds.) Economics of Grids, Clouds, Systems, and Services, pp. 18–31. Springer, Cham (2016)
Mattess, M., Calheiros, R.N., Buyya, R.: Scaling MapReduce applications across hybrid clouds to meet soft deadlines. In: 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), pp. 629–636 (2013). https://doi.org/10.1109/AINA.2013.51
Mattess, M., Vecchiola, C., Buyya, R.: Managing peak loads by leasing cloud infrastructure services from a spot market. In: 2010 IEEE 12th International Conference on High Performance Computing and Communications (HPCC), pp. 180–188 (2010). https://doi.org/10.1109/HPCC.2010.77
Mattess, M., Vecchiola, C., Garg, S., Buyya, R.: Cloud Computing: Methodology, Systems, and Applications. CRC Press, Boca Raton (2011)
Mechtri, M., Hadji, M., Zeghlache, D.: Exact and heuristic resource mapping algorithms for distributed and hybrid clouds. IEEE Trans. Cloud Comput. 5(4), 681–696 (2017). https://doi.org/10.1109/TCC.2015.2427192
Morla, R., Gonçalves, P., Barbosa, J.: A scheduler for cloud bursting of map-intensive traffic analysis jobs. In: Proceedings of the Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015), pp. 11–21 (2015)
Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel Distrib Syst. 12(6), 529–543 (2001). https://doi.org/10.1109/71.932708
Nachiappan, R., Javadi, B., Calheiros, R.N., Matawie, K.M.: Cloud storage reliability for big data applications: a state of the art survey. J. Netw. Comput. Appl. 97, 35–47 (2017). https://doi.org/10.1016/j.jnca.2017.08.011
Nahir, A., Orda, A., Raz, D.: Workload factoring with the cloud: a game-theoretic perspective. In: 2012 Proceedings IEEE INFOCOM, pp. 2566–2570 (2012). https://doi.org/10.1109/INFCOM.2012.6195654
Nguyen, T.L., Lebre, A.: Virtual machine boot time model. In: 2017 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 430–437 (2017). https://doi.org/10.1109/PDP.2017.58
Niu, Y., Luo, B., Liu, F., Liu, J., Li, B.: When hybrid cloud meets flash crowd: towards cost-effective service provisioning. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 1044–1052 (2015). https://doi.org/10.1109/INFOCOM.2015.7218477
Ogawa, Y., Hasegawa, G., Murata, M.: Cloud bursting approach based on predicting requests for business-critical web systems. In: 2017 International Conference on Computing, Networking and Communications (ICNC), pp. 437–441 (2017). https://doi.org/10.1109/ICCNC.2017.7876168
Oktay, K.Y., Khadilkar, V., Hore, B., Kantarcioglu, M., Mehrotra, S., Thuraisingham, B.: Risk-aware workload distribution in hybrid clouds. In: 2012 IEEE Fifth International Conference on Cloud Computing, pp. 229–236 (2012). https://doi.org/10.1109/CLOUD.2012.128
Open Nebula: the open source toolkit for data center virtualization. http://www.opennebula.org (2018). Accessed 18 Jan 2020
Openstack: open source software for creating private and public clouds. http://www.openstack.org (2018). Accessed 18 Jan 2020
Pasdar, A., Almi’ani, K., Lee, Y.C.: Data-aware scheduling of scientific workflows in hybrid clouds. In: Shi, Y., Fu, H., Tian, Y., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J., Sloot, P.M.A. (eds.) Computational Science—ICCS 2018, pp. 708–714. Springer, Cham (2018)
Peláez, V., Campos, A., García, D.F., Entrialgo, J.: Autonomic scheduling of deadline-constrained bag of tasks in hybrid clouds. In: 2016 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), pp. 1–8 (2016). https://doi.org/10.1109/SPECTS.2016.7570526
Peláez, V., Campos, A., García, D.F., Entrialgo, J.: Online scheduling of deadline-constrained bag-of-task workloads on hybrid clouds. Concurr. Comput. Pract. Exp. e4639 (2018)
Popović, K., Ž. Hocenski: cloud computing security issues and challenges. In: The 33rd International Convention MIPRO, pp. 344–349 (2010)
Qiu, X., Li, H., Wu, C., Li, Z., Lau, F.C.M.: Dynamic scaling of VoD services into hybrid clouds with cost minimization and QoS guarantee. In: 2012 19th International Packet Video Workshop (PV), pp. 137–142 (2012). https://doi.org/10.1109/PV.2012.6229726
Qiu, X., Li, H., Wu, C., Li, Z., Lau, F.C.M.: Cost-minimizing dynamic migration of content distribution services into hybrid clouds. IEEE Trans. Parallel Distrib. Syst. 26(12), 3330–3345 (2015). https://doi.org/10.1109/TPDS.2014.2371831
Qiu, X., Yeow, W.L., Wu, C., Lau, F.C.M.: Cost-minimizing preemptive scheduling of mapreduce workloads on hybrid clouds. In: 2013 IEEE/ACM 21st International Symposium on Quality of Service (IWQoS), pp. 1–6 (2013). https://doi.org/10.1109/IWQoS.2013.6550284
Quarati, A., Danovaro, E., Galizia, A., Clematis, A., D’Agostino, D., Parodi, A.: Scheduling strategies for enabling meteorological simulation on hybrid clouds. J. Comput. Appl. Math. 273, 438–451 (2015). https://doi.org/10.1016/j.cam.2014.05.001
Rahman, M., Li, X., Palit, H.: Hybrid heuristic for scheduling data analytics workflow applications in hybrid cloud environment. In: 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and PhD Forum, pp. 966–974 (2011). https://doi.org/10.1109/IPDPS.2011.243
Razavi, K., Kolk, G.V.D., Kielmann, T.: Prebaked \(\mu \)VMs: scalable, instant VM startup for IaaS clouds. In: 2015 IEEE 35th International Conference on Distributed Computing Systems, pp. 245–255 (2015). https://doi.org/10.1109/ICDCS.2015.33
Ruiz-Alvarez, A., Humphrey, M.: Toward optimal resource provisioning for cloud MapReduce and hybrid cloud applications. In: 2014 IEEE/ACM International Symposium on Big Data Computing, pp. 74–82 (2014). https://doi.org/10.1109/BDC.2014.14
Ruiz-Alvarez, A., Kim, I.K., Humphrey, M.: Toward optimal resource provisioning for cloud mapreduce and hybrid cloud applications. In: 2015 IEEE 8th International Conference on Cloud Computing, pp. 669–677 (2015). https://doi.org/10.1109/CLOUD.2015.94
Saber, T., Thorburn, J., Murphy, L., Ventresque, A.: VM reassignment in hybrid clouds for large decentralised companies: a multi-objective challenge. Future Gener. Comput. Syst. 79, 751–764 (2018). https://doi.org/10.1016/j.future.2017.06.015
Satyanarayanan, M., Simoens, P., Xiao, Y., Pillai, P., Chen, Z., Ha, K., Hu, W., Amos, B.: Edge analytics in the Internet of Things. IEEE Pervasive Comput. 14(2), 24–31 (2015). https://doi.org/10.1109/MPRV.2015.32
Sharif, S., Taheri, J., Zomaya, A.Y., Nepal, S.: MPHC: preserving privacy for workflow execution in hybrid clouds. In: 2013 International Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 272–280 (2013). https://doi.org/10.1109/PDCAT.2013.49
Sharif, S., Taheri, J., Zomaya, A.Y., Nepal, S.: Online multiple workflow scheduling under privacy and deadline in hybrid cloud environment. In: 2014 IEEE 6th International Conference on Cloud Computing Technology and Science, pp. 455–462 (2014). https://doi.org/10.1109/CloudCom.2014.128
Sharma, Y., Javadi, B., Si, W., Sun, D.: Reliability and energy efficiency in cloud computing systems: survey and taxonomy. J. Netw. Comput. Appl. 74, 66–85 (2016). https://doi.org/10.1016/j.jnca.2016.08.010
Shifrin, M., Atar, R., Cidon, I.: Optimal scheduling in the hybrid-cloud. In: 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013), pp. 51–59 (2013)
Siddiqui, U., Tahir, G.A., Rehman, A.U., Ali, Z., Rasool, R.U., Bloodsworth, P.: Elastic JADE: dynamically scalable multi agents using cloud resources. In: 2012 Second International Conference on Cloud and Green Computing, pp. 167–172 (2012). https://doi.org/10.1109/CGC.2012.60
Speitkamp, B., Bichler, M.: A mathematical programming approach for server consolidation problems in virtualized data centers. IEEE Trans. Serv. Comput. 3(4), 266–278 (2010). https://doi.org/10.1109/TSC.2010.25
Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Selective reservation strategies for backfill job scheduling. In: Job Scheduling Strategies for Parallel Processing: 8th International Workshop, JSSPP 2002 Edinburgh, Scotland, UK, July 24, 2002 Revised Papers, pp. 55–71. Springer, Berlin (2002)
Sukumar, K., Vecchiola, C., Buyya, R.: The structure of the new IT frontier: Aneka platform for elastic cloud computing applications. Strateg. Facil. Mag. 25(6), 599–616 (2010)
Taheri, J., Zomaya, A.Y., Siegel, H.J., Tari, Z.: Pareto frontier for job execution and data transfer time in hybrid clouds. Future Gener. Comput. Syst. 37, 321–334 (2014)
Tian, W., Zhao, Y.: Optimized Cloud Resource Management and Scheduling: Theories and Practices, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2014)
Toosi, A.N., Sinnott, R.O., Buyya, R.: Resource provisioning for data-intensive applications with deadline constraints on hybrid clouds using Aneka. Future Gener. Comput. Syst. 79, 765–775 (2018). https://doi.org/10.1016/j.future.2017.05.042
Unuvar, M., Steinder, M., Tantawi, A.N.: Hybrid cloud placement algorithm. In: 2014 IEEE 22nd International Symposium on Modelling, Analysis Simulation of Computer and Telecommunication Systems, pp. 197–206 (2014). https://doi.org/10.1109/MASCOTS.2014.33
Vecchiola, C., Calheiros, R.N., Karunamoorthy, D., Buyya, R.: Deadline-driven provisioning of resources for scientific applications in hybrid clouds with Aneka. Future Gener. Comput. Syst. 28(1), 58–65 (2012)
Verma, A., Ahuja, P., Neogi, A.: pMapper: power and migration cost aware application placement in virtualized systems. In: Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware, Middleware ’08, pp. 243–264. Springer, New York (2008)
Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.: Large-scale cluster management at Google with Borg. In: Proceedings of the Tenth European Conference on Computer Systems, EuroSys ’15, pp. 18:1–18:17. ACM, New York (2015). https://doi.org/10.1145/2741948.2741964
Vilutis, G., Daugirdas, L., Kavaliūnas, R., Šutienė, K., Vaidelys, M.: Model of load balancing and scheduling in Cloud computing. In: Proceedings of the ITI 2012 34th International Conference on Information Technology Interfaces, pp. 117–122 (2012). https://doi.org/10.2498/iti.2012.0460
VMware: public and hybrid cloud computing. http://www.vmware.com/ (2018). Accessed 18 Jan 2020
Vogels, W.: Beyond server consolidation. Queue 6(1), 20–26 (2008). https://doi.org/10.1145/1348583.1348590
Wang, B., Song, Y., Cui, X., Cao, J.: Mathematical programming for server consolidation in cloud data centers. In: 2017 4th International Conference on Systems and Informatics (ICSAI), pp. 678–683 (2017). https://doi.org/10.1109/ICSAI.2017.8248374
Wang, B., Song, Y., Cui, X., Cao, J.: Performance comparison between hypervisor- and container-based virtualizations for cloud users. In: 2017 4th International Conference on Systems and Informatics (ICSAI), pp. 684–689 (2017). https://doi.org/10.1109/ICSAI.2017.8248375
Wang, B., Song, Y., Sun, Y., Liu, J.: Managing deadline-constrained bag-of-tasks jobs on hybrid clouds. In: Proceedings of the 24th High Performance Computing Symposium, HPC ’16, pp. 22:1–22:8. Society for Computer Simulation International, San Diego (2016). https://doi.org/10.22360/SpringSim.2016.HPC.039
Wang, B., Song, Y., Sun, Y., Liu, J.: Managing deadline-constrained bag-of-tasks jobs on hybrid clouds with closest deadline first scheduling. KSII Trans. Internet Inf. Syst. 10(7), 2952–2971 (2016). https://doi.org/10.3837/tiis.2016.07.005
Wang, B., Song, Y., Sun, Y., Liu, J.: Analysis model for server consolidation of virtualized heterogeneous data centers providing internet services. Clust. Comput. 22(3), 911–928 (2019). https://doi.org/10.1007/s10586-018-2880-x
Wang, W.J., Chang, Y.S., Lo, W.T., Lee, Y.K.: Adaptive scheduling for parallel tasks with QoS satisfaction for hybrid cloud environments. J. Supercomput. 66(2), 783–811 (2013)
Web of Science. http://apps.webofknowledge.com/ (2018). Accessed 18 Jan 2020
Wei, Y., Sukumar, K., Vecchiola, C., Karunamoorthy, D., Buyya, R.: Aneka Cloud Application Platform and Its Integration with Windows Azure. CoRR arXiv:abs/1103.2590 (2011)
Wu, H., Ren, S., Garzoglio, G., Timm, S., Bernabeu, G., Kimy, H., Chadwick, K., Jang, H., Noh, S.Y.: Automatic cloud bursting under FermiCloud. In: 2013 International Conference on Parallel and Distributed Systems (ICPADS), pp. 681–686 (2013)
Wu, X., Gu, Y., Li, G.: Game analysis of workload factoring with the hybrid cloud. In: 2013 First International Symposium on Computing and Networking, pp. 263–269 (2013). https://doi.org/10.1109/CANDAR.2013.46
Xie, H., Song, X., Bi, J., Yuan, H.: VCG auction based idle instance bidding to increase IaaS provider’s profit in hybrid clouds. In: Mohamed Ali, M.S., Wahid, H., Mohd Subha, N.A., Sahlan, S., Md. Yunus, M.A., Wahap, A.R. (eds.) Modeling, Design and Simulation of Systems, pp. 359–368. Springer, Singapore (2017)
Xu, F., Liu, F., Jin, H.: Heterogeneity and interference-aware virtual machine provisioning for predictable performance in the cloud. IEEE Trans. Comput. 65(8), 2470–2483 (2016)
Yu, J., Buyya, R., Tham, C.K.: Cost-based scheduling of scientific workflow applications on utility grids. In: First International Conference on e-Science and Grid Computing (e-Science’05), pp. 140–147 (2005)
Yuan, H., Bi, J., Tan, W., Li, B.H.: Temporal task scheduling with constrained service delay for profit maximization in hybrid clouds. IEEE Trans. Autom. Sci. Eng. 14(1), 337–348 (2017). https://doi.org/10.1109/TASE.2016.2526781
Yuan, H., Bi, J., Tan, W., Zhou, M., Li, B.H., Li, J.: TTSA: an effective scheduling approach for delay bounded tasks in hybrid clouds. IEEE Trans. Cybern. 47(11), 3658–3668 (2017)
Yuan, X., Weng, J., Wang, C., Ren, K.: Secure integrated circuit design via hybrid cloud. IEEE Trans. Parallel Distrib. Syst. 29(8), 1851–1864 (2018). https://doi.org/10.1109/TPDS.2018.2807844
Zakarya, M., Gillam, L.: Energy efficient computing, clusters, grids and clouds: a taxonomy and survey. Sustain. Comput. Inform. Syst. 14, 13–33 (2017). https://doi.org/10.1016/j.suscom.2017.03.002
Zhang, G., Zuo, X.: Deadline constrained task scheduling based on standard-PSO in a hybrid cloud. In: Tan, Y., Shi, Y., Mo, H. (eds.) Advances in Swarm Intelligence. ICSI 2013, pp. 200–209. Springer, Berlin (2013)
Zhang, H., Jiang, G., Yoshihira, K., Chen, H.: Proactive workload management in hbrid cloud computing. IEEE Trans. Netw. Serv. Manag. 11(1), 90–100 (2014). https://doi.org/10.1109/TNSM.2013.122313.130448
Zhang, H., Jiang, G., Yoshihira, K., Chen, H., Saxena, A.: Intelligent workload factoring for a hybrid cloud computing model. In: 2009 Congress on Services—I, pp. 701–708 (2009). https://doi.org/10.1109/SERVICES-I.2009.26
Zhang, H., Jiang, G., Yoshihira, K., Chen, H., Saxena, A.: Resilient workload manager: taming bursty workload of scaling internet applications. In: Proceedings of the 6th International Conference Industry Session on Autonomic Computing and Communications Industry Session, ICAC-INDST ’09, pp. 19–28. ACM, New York (2009). https://doi.org/10.1145/1555312.1555318
Zhang, P., Lin, C., Li, W., Ma, X.: Long-term multi-objective task scheduling with Diff-Serv in hybrid clouds. In: Bouguettaya, A., Gao, Y., Klimenko, A., Chen, L., Zhang, X., Dzerzhinskiy, F., Jia, W., Klimenko, S.V., Li, Q. (eds.) Web Information Systems Engineering—WISE 2017, pp. 243–258. Springer, Cham (2017)
Zhang, Q., Chen, H., Shen, Y., Ma, S., Lu, H.: Optimization of virtual resource management for cloud applications to cope with traffic burst. Future Gener. Comput. Syst. 58, 42–55 (2016). https://doi.org/10.1016/j.future.2015.12.011
Zhang, X., Tune, E., Hagmann, R., Jnagal, R., Gokhale, V., Wilkes, J.: CPI2: CPU performance isolation for shared compute clusters. In: Proceedings of the 8th ACM European Conference on Computer Systems, EuroSys ’13, pp. 379–391. ACM, New York (2013). https://doi.org/10.1145/2465351.2465388
Zhang, Y., Sun, J.: Novel efficient particle swarm optimization algorithms for solving QoS-demanded bag-of-tasks scheduling problems with profit maximization on hybrid clouds. Concurr. Comput. Pract. Exp. 29(21), e4249:1–e4249:19 (2017). https://doi.org/10.1002/cpe.4249
Zhang, Y., Sun, J., Wu, Z.: An heuristic for bag-of-tasks scheduling problems with resource demands and budget constraints to minimize makespan on hybrid clouds. In: 2017 Fifth International Conference on Advanced Cloud and Big Data (CBD), pp. 39–44 (2017). https://doi.org/10.1109/CBD.2017.15
Zhang, Y., Sun, J., Wu, Z., Xie, S., Xu, R.: Scheduling parallel intrusion detecting applications on hybrid clouds. Secur. Commun. Netw. 2018, 2863793:1–2863793:12 (2018). https://doi.org/10.1155/2018/2863793
Zhang, Y., Sun, J., Zhu, J.: An effective heuristic for due-date-constrained bag-of-tasks scheduling problem for total cost minimization on hybrid clouds. In: 2016 International Conference on Progress in Informatics and Computing (PIC), pp. 479–486 (2016). https://doi.org/10.1109/PIC.2016.7949548
Zhou, B., Zhang, F., Wu, J., Liu, Z.: Cost reduction in hybrid clouds for enterprise computing. In: 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 270–274 (2017). https://doi.org/10.1109/ICDCSW.2017.13
Zhu, J., Li, X., Ruiz, R., Xu, X.: Scheduling stochastic multi-stage jobs to elastic hybrid cloud resources. IEEE Trans. Parallel Distrib. Syst. 29(6), 1401–1415 (2018). https://doi.org/10.1109/TPDS.2018.2793254
Zhu, J., Li, X., Ruiz, R., Xu, X., Zhang, Y.: Scheduling stochastic multi-stage jobs on elastic computing services in hybrid clouds. In: 2016 IEEE International Conference on Web Services (ICWS), pp. 678–681 (2016). https://doi.org/10.1109/ICWS.2016.94
Zinnen, A., Engel, T.: Deadline constrained scheduling in hybrid clouds with Gaussian processes. In: 2011 International Conference on High Performance Computing Simulation, pp. 294–300 (2011). https://doi.org/10.1109/HPCSim.2011.5999837
Zuo, L., Shu, L., Dong, S., Chen, Y., Yan, L.: A multi-objective hybrid cloud resource scheduling method based on deadline and cost constraints. IEEE Access 5, 22067–22080 (2017). https://doi.org/10.1109/ACCESS.2016.2633288
Zuo, X., Zhang, G., Tan, W.: Self-adaptive learning PSO-based deadline constrained task scheduling for hybrid IaaS cloud. IEEE Trans. Autom. Sci. Eng. 11(2), 564–573 (2014). https://doi.org/10.1109/TASE.2013.2272758