On the lifting property for the lipschitz spaces $$\varLambda _{\alpha }$$ with $$\alpha >0$$
Tóm tắt
By combining suitable estimates for Bessel kernel and an interpolation argument, we give an alternative proof of the lifting property
$$\begin{aligned} (-\varDelta +1)^{-\alpha }: \varLambda _{\beta }\rightarrow \varLambda _{\beta +2\alpha } \quad \text{ is } \text{ an } \text{ isomorphism, } \end{aligned}$$
where
$$\alpha \ge 0$$
,
$$\beta >0$$
, and
$$\varLambda _{\beta }$$
denotes the classical Lipschitz space.
Tài liệu tham khảo
Ambrosio, V.: Nonlinear Fractional Schrödinger Equations in \({\mathbb{R} }^{N}\). Frontiers in Elliptic and Parabolic Problems. Birkhäuser/Springer, Cham (2021)
Ambrosio, V.: On the fractional relativistic Schrödinger operator. J. Differential Equations 308, 327–368 (2022)
Aronszajn, N., Smith, K.T.: Theory of Bessel potentials. I. Ann. Inst. Fourier (Grenoble) 11, 385–475 (1961)
Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York (1976)
Calderón, A.-P.: Lebesgue spaces of differentiable functions and distributions. 1961 Proc. Sympos. Pure Math., Vol. IV pp. 33–49. American Mathematical Society, Providence, RI
Flett, T.M.: Temperatures, Bessel potentials and Lipschitz spaces. Proc. London Math. Soc. 3(22), 385–451 (1971)
Hörmander, L.: Pseudo-differential Operators and Hypoelliptic Equations, Singular Integrals. (Proc. Sympos. Pure Math., Vol. X, Chicago, Ill., 1966), pp. 138–183. Amer. Math. Soc., Providence, RI (1967)
Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Mathématiques & Applications (Berlin) [Mathematics & Applications], 26. Springer-Verlag, Berlin (1997)
Krantz, S.G.: Lipschitz spaces on stratified groups. Trans. Amer. Math. Soc. 269(1), 39–66 (1982)
Krantz, S.G.: Lipschitz spaces, smoothness of functions, and approximation theory. Exposition. Math. 1(3), 193–260 (1983)
Krantz, S. G.: Partial Differential Equations and Complex Analysis. Lecture Notes Prepared by Estela A. Gavosto and Marco M. Peloso. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992)
Lions, J.-L., Peetre, J.: Sur une classe d’espaces d’interpolation. Inst. Hautes Études Sci. Publ. Math. No. 19, 5–68 (1964)
Lunardi, A.: Interpolation Theory. Third Edition. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 16. Edizioni della Normale, Pisa (2018)
Nagel, A., Stein, E.M.: Lectures on Pseudodifferential Operators: Regularity Theorems and Applications to Nonelliptic Problems. Mathematical Notes, 24. Princeton University Press, Princeton, N.J; University of Tokyo Press, Tokyo (1979)
Nikol’skiĭ, S. M.: Approximation of Functions of Several Variables and Imbedding Theorems. Translated from the Russian by John M. Danskin, Jr. Die Grundlehren der mathematischen Wissenschaften, Band 205. Springer-Verlag, New York-Heidelberg (1975)
Nikol’skiĭ, S.M., Lions, J.-L., Lizorkin, P. I.: Integral representation and isomorphism properties of some classes of functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 19, 127–178 (1965)
Peetre, J.: New Thoughts on Besov Spaces. Duke University Mathematics Series, No. 1. Mathematics Department, Duke University, Durham, N.C (1976)
Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137(3–4), 247–320 (1976)
Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60(1), 67–112 (2007)
Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J (1970)
Stinga, P.R.: User’s guide to the fractional Laplacian and the method of semigroups. Handbook of Fractional Calculus with Applications. Vol. 2, 235–265, De Gruyter, Berlin (2019)
Taibleson, M.H.: On the theory of Lipschitz spaces of distributions on Euclidean \(n\)-space. I. Principal properties. J. Math. Mech. 13, 407–479 (1964)
Taibleson, M. H.: On the theory of Lipschitz spaces of distributions on Euclidean \(n\)-space. II. Translation invariant operators, duality, and interpolation. J. Math. Mech. 14, 821–839 (1965)
Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, 78. Birkhäuser Verlag, Basel (1983)
Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge, England; The Macmillan Company, New York (1944)
Zygmund, A.: Smooth functions. Duke Math. J. 12, 47–76 (1945)