Hybrid Nanocomposite Materials—between inorganic glasses and organic polymers

Advanced Materials - Tập 5 Số 6 - Trang 422-433 - 1993
Bruce M. Novak1,2
1After serving three years as a paratrooper in the US Army, Bruce Novak attended California State University, Northridge, where he was received his B.S. (1983) and M. S. (1985) degrees in chemistry. He then moved to the California Institute of Technology, where he was awarded his Ph.D. for work under the supervision of Professor Robert Grubbs in 1989. He is currently an assistant professor in the Chemistry Department of the University of California at Berkeley. His research interests include the synthesis of organic–inorganic interpenetrating networks that display mixing near the molecular level, and the development of transition metal complexes that initiate living polymerizations.
2Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA

Tóm tắt

AbstractThe sol–gel process, with its associated mild conditions, offers a new approach to the synthesis of composite materials with domain sizes approaching the molecular level. Transparent organic–inorganic composites can be prepared by dissolving preformed polymers into sot–gel precursor solutions, and then allowing the tetraalkyl orthosilicates to hydrolyze and condense to form glassy SiO2 phases of different morphological structures. Alternatively, both the organic and inorganic phases can be simultaneously formed through the synchronous polymerization of the organic monomer and the sol–gel precursors. Depending upon such factors as the structures of the organic and inorganic components, the phase morphology, the degree of interpenetration, and the presence of covalent bonds between the phases, the properties of these composites can vary greatly and range from elastomeric rubbers to high–modulus materials.

Từ khóa


Tài liệu tham khảo

10.1007/978-1-4615-1761-0

10.1007/978-1-4615-7139-1

10.1016/0032-3861(91)90068-T

10.1016/0022-3093(91)90124-O

F. E.Karasz P. N.Prasad Y.Pang C. J.Wung US Patent 5 130362 July1992.

10.1016/0038-1098(91)90421-Q

10.1007/978-1-4613-0657-3_15

Imanishi Y., 1992, Synthesis of Biocomposite Materials

Weetal H. H., 1975, Immobilized Enzymes, Antigens, and Peptides

Messing R. A., 1975, Immobilized Enzymes for Industrial Reactors

10.1126/science.1312257

10.1021/cm00025a022

10.1007/978-1-4899-2070-6

Richerson D. W., 1982, Modern Ceramic Engineering

10.1016/B978-0-08-057103-4.50013-1

D. R.Ulrich CHEMTECH1988 242.

Mackenzie J. D., 1988, Ultastructure Processing of Advanced Ceramics

Klein L. C., 1988, Sol–gel Technology for Thin Films, Fibers, Preforms, Electronics, and Speciality Shapes

10.1557/PROC-32-1

Scherer G. W., 1992, Drying ′92, 92

10.1016/S0022-3093(05)80645-3

Zarzycki J., 1984, Ultrastructure Processing of Ceramics, Glasses, and Composites, 27

Shoup R. D., 1977, Colloid and Interface Science, 63

10.1007/BF01203507

10.1007/BF00587659

Egeberg E. Degn, 1989, Rev. Phys. Appl., 24, C4

L. L.Hench G. F.Orcel US Patent 4851 150 1989.

10.1016/0022-3093(88)90086-5

10.1557/PROC-271-527

10.1016/0022-3093(89)90030-6

10.1295/koron.40.225

Messermith P. B., 1991, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 32, 536

David I. A., 1991, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 32, 530

10.1080/00222339108054061

Landry C. J. T., 1991, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 32, 514

Novak B. M., 1990, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 31, 698

B. M.Novak M.Ellsworth C.Davies Extended Abstracts Japan–US Joint Seminar on Inorganic and Organometallic Polymers 1991 p.160.

Scanning electron microscope images recorded on a JEOL‐35C at 20 kV courtesy of John VanSlyke and Ronald Wilson Dept. of Metallurgy and Mining University of California Berkeley. CA.

L. J.Taylor US Patent 3817911 1974.

G.Tunker H.Schmidt G.Philipp Eur. Patent 281082 1988.

Schmidt H., 1987, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 28, 102

S.Kitamura US Patent 4772660 1988.

K. H.Hilterhaus US Patent 4827005 1989.

10.1557/JMR.1989.1018

van de Hust H. C., 1957, Light Scattering by Small Particles, 10.1063/1.3060205

10.1002/marc.1982.030031006

10.1002/app.1984.070291022

Wang S.‐B., 1985, Polym. Bull., 17, 271

10.1007/BF01153435

Wang S.‐B., 1991, Polym. Prepr. (Am. Cham. Soc., Div. Polym. Chem.), 32, 523

10.1016/S0065-3055(08)60328-7

Wilkes G. L., 1985, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 26, 300

10.1021/ma00172a026

10.1007/BF00255119

10.1016/0032-3861(87)90412-5

Glaser R. H., 1987, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 28, 236

Huang H.‐H., 1987, Inorganic and Organometallic Polymers, 354

10.1007/BF00275602

10.1016/0032-3861(89)90286-3

10.1002/masy.19910420125

10.1007/BF00255023

Wang B., 1991, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 32, 521

10.1557/PROC-32-327

10.1021/cm00010a001

Wei Y., 1991, Polym. Prepr. (Ant. Chem. Soc., Div. Polym. Chem.), 32, 503

10.1016/0022-3093(84)90381-8

10.1016/0022-3093(89)90565-6

10.1557/PROC-73-739

10.1007/978-1-4684-3830-7

10.1021/ja00230a047

10.1021/ja00007a062

10.1021/ma00019a044

10.1557/PROC-274-67

M. W.Ellsworth B. M.Novak Mater. Sci. Eng. A in press.

J. S.Kirk S. H.Village US Patent 2 395 800 1946.

J. S.Kirk S. H.Village US Patent 2 408 656 1946.

10.1021/ie50455a603

10.1021/ic50014a029

10.1002/pol.1982.130200401

10.1002/pol.1983.170210105

10.1016/0022-3093(89)90455-9