The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology

Current Opinion in Microbiology - Tập 14 - Trang 300-306 - 2011
Michael Pester1, Christa Schleper2, Michael Wagner1
1Department of Microbial Ecology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
2Department of Genetics in Ecology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria

Tài liệu tham khảo

Gruber, 2008, An Earth-system perspective of the global nitrogen cycle, Nature, 451, 293, 10.1038/nature06592 Purkhold, 2000, Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys, Appl Environ Microbiol, 66, 5368, 10.1128/AEM.66.12.5368-5382.2000 De Boer, 2001, Nitrification in acid soils: micro-organisms and mechanisms, Soil Biol Biochem, 33, 853, 10.1016/S0038-0717(00)00247-9 Prosser, 1989, Autotrophic nitrification in bacteria, Adv Microb Physiol, 30, 125, 10.1016/S0065-2911(08)60112-5 Venter, 2004, Environmental genome shotgun sequencing of the Sargasso Sea, Science, 304, 66, 10.1126/science.1093857 Treusch, 2005, Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling, Environ Microbiol, 7, 1985, 10.1111/j.1462-2920.2005.00906.x Hallam, 2006, Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota, PLoS Biol, 4, 2412, 10.1371/journal.pbio.0040095 Könneke, 2005, Isolation of an autotrophic ammonia-oxidizing marine archaeon, Nature, 437, 543, 10.1038/nature03911 de la Torre, 2008, Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol, Environ Microbiol, 10, 810, 10.1111/j.1462-2920.2007.01506.x Hatzenpichler, 2008, A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring, Proc Natl Acad Sci U S A, 2134, 10.1073/pnas.0708857105 Blainey, 2011, Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis, PLoS ONE, 6, e16626, 10.1371/journal.pone.0016626 Francis, 2005, Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean, Proc Natl Acad Sci U S A, 102, 14683, 10.1073/pnas.0506625102 Wuchter, 2006, Archaeal nitrification in the ocean, Proc Natl Acad Sci U S A, 103, 12317, 10.1073/pnas.0600756103 Leininger, 2006, Archaea predominate among ammonia-oxidizing prokaryotes in soils, Nature, 442, 806, 10.1038/nature04983 Zhang, 2008, Global occurrence of archaeal amoA genes in terrestrial hot springs, Appl Environ Microbiol, 74, 6417, 10.1128/AEM.00843-08 Fuhrman, 1992, Novel major archaebacterial group from marine plankton, Nature, 356, 148, 10.1038/356148a0 Delong, 1992, Archaea in coastal marine environments, Proc Natl Acad Sci U S A, 89, 5685, 10.1073/pnas.89.12.5685 Brochier-Armanet, 2008, Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota, Nat Rev Microbiol, 6, 245, 10.1038/nrmicro1852 Spang, 2010, Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota, Trends Microbiol, 18, 331, 10.1016/j.tim.2010.06.003 Gupta, 2011, Molecular signatures for the Crenarchaeota and the Thaumarchaeota, Antonie van Leeuwenhoek, 99, 133, 10.1007/s10482-010-9488-3 Brochier-Armanet, 2011, Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea, ISME J, 10.1038/ismej.2011.16 Pitcher, 2010, Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I.1b Archaeon, ISME J, 4, 542, 10.1038/ismej.2009.138 Schouten, 2008, Intact membrane lipids of “Candidatus Nitrosopumilus maritimus” a cultivated representative of the cosmopolitan mesophilic group I crenarchaeota, Appl Environ Microbiol, 74, 2433, 10.1128/AEM.01709-07 Damsté, 2002, Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota, J Lipid Res, 43, 1641, 10.1194/jlr.M200148-JLR200 Mincer, 2007, Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre, Environ Microbiol, 9, 1162, 10.1111/j.1462-2920.2007.01239.x Muller, 2010, First description of giant Archaea (Thaumarchaeota) associated with putative bacterial ectosymbionts in a sulfidic marine habitat, Environ Microbiol, 12, 2371, 10.1111/j.1462-2920.2010.02309.x Herndl, 2005, Contribution of archaea to total prokaryotic production in the deep Atlantic Ocean, Appl Environ Microbiol, 71, 2303, 10.1128/AEM.71.5.2303-2309.2005 Konstantinidis, 2009, Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific Subtropical Gyre, Appl Environ Microbiol, 75, 5345, 10.1128/AEM.00473-09 Nunoura, 2011, Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group, Nucleic Acids Res., 10.1093/nar/gkq1228 Schleper, 2010, Ammonia-oxidising archaea—physiology, ecology and evolution, Adv Microb Physiol, 57, 1, 10.1016/B978-0-12-381045-8.00001-1 Semrau, 2010, Methanotrophs and copper, FEMS Microbiol Rev, 34, 496, 10.1111/j.1574-6976.2010.00212.x Ettwig, 2010, Nitrite-driven anaerobic methane oxidation by oxygenic bacteria, Nature, 464, 543, 10.1038/nature08883 Sayavedra-Soto, 2011, The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family, Environ Microbiol Rep, 10.1111/j.1758-2229.2010.00239.x Chang, 2002, Cooxidation of naphthalene and other polycyclic aromatic hydrocarbons by the nitrifying bacterium, Nitrosomonas europaea, Biodegradation, 13, 373, 10.1023/A:1022811430030 Yoon, 2011, Constitutive expression of pMMO by Methylocystis strain SB2 when grown on multi-carbon substrates: implications for biodegradation of chlorinated ethenes, Environ Microbiol Rep, 3, 182, 10.1111/j.1758-2229.2010.00205.x Tavormina, 2011, A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs, Environ Microbiol Rep, 3, 91, 10.1111/j.1758-2229.2010.00192.x Klotz, 2006, Complete genome sequence of the marine, chemolithoautotrophic, ammonia-oxidizing bacterium Nitrosococcus oceani ATCC 19707, Appl Environ Microbiol, 72, 6299, 10.1128/AEM.00463-06 Trotsenko, 2008, Metabolic aspects of aerobic obligate methanotrophy, 183, 10.1016/S0065-2164(07)00005-6 Lontoh, 2000, Differential inhibition in vivo of ammonia monooxygenase, soluble methane monooxygenase and membrane-associated methane monooxygenase by phenylacetylene, Environ Microbiol, 2, 485, 10.1046/j.1462-2920.2000.00130.x Wuchter, 2003, Bicarbonate uptake by marine Crenarchaeota, FEMS Microbiol Lett, 219, 203, 10.1016/S0378-1097(03)00060-0 Yakimov, 2011, Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea), ISME J., 10.1038/ismej.2010.197 Walker, 2010, Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea, Proc Natl Acad Sci U S A, 107, 8818, 10.1073/pnas.0913533107 Martin-Cuadrado, 2008, Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions, ISME J, 2, 865, 10.1038/ismej.2008.40 La Cono, 2010, Genomic signatures of fifth autotrophic carbon assimilation pathway in bathypelagic Crenarchaeota, Microb Biotechnol, 3, 595, 10.1111/j.1751-7915.2010.00186.x Hallam, 2006, Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine crenarchaeota, PLoS Biol, 4, 2412, 10.1371/journal.pbio.0040095 Ingalls, 2006, Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon, Proc Natl Acad Sci U S A, 103, 6442, 10.1073/pnas.0510157103 Ouverney, 2000, Marine planktonic archaea take up amino acids, Appl Environ Microbiol, 66, 4829, 10.1128/AEM.66.11.4829-4833.2000 Berg, 2010, Autotrophic carbon fixation in archaea, Nat Rev Microbiol, 8, 447, 10.1038/nrmicro2365 Pratscher, 2011, Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil, Proc Natl Acad Sci U S A, 108, 4170, 10.1073/pnas.1010981108 Xia, 2011, Autotrophic growth of nitrifying community in an agricultural soil, ISME J, 10.1038/ismej.2011.5 Zhang, 2010, Autotrophic ammonia oxidation by soil thaumarchaea, Proc Natl Acad Sci U S A, 107, 17240, 10.1073/pnas.1004947107 Jia, 2009, Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil, Environ Microbiol, 11, 1658, 10.1111/j.1462-2920.2009.01891.x Huber, 2006, Sulfolobales, vol 3, 23 Martens-Habbena, 2009, Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria, Nature, 461, 976, 10.1038/nature08465 Koper, 2010, Nitrification exhibits Haldane kinetics in an agricultural soil treated with ammonium sulfate or dairy-waste compost, FEMS Microbiol Ecol, 74, 316, 10.1111/j.1574-6941.2010.00960.x Di, 2010, Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions, FEMS Microbiol Ecol, 72, 386, 10.1111/j.1574-6941.2010.00861.x Erguder, 2009, Environmental factors shaping the ecological niches of ammonia-oxidizing archaea, FEMS Microbiol Rev, 33, 855, 10.1111/j.1574-6976.2009.00179.x Coolen, 2007, Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids, Environ Microbiol, 9, 1001, 10.1111/j.1462-2920.2006.01227.x Durbin, 2010, Sediment-associated microdiversity within the Marine Group I Crenarchaeota, Environ Microb Rep, 2, 693, 10.1111/j.1758-2229.2010.00163.x Karner, 2001, Archaeal dominance in the mesopelagic zone of the Pacific Ocean, Nature, 409, 507, 10.1038/35054051 Schramm, 2000, Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm, Environ Microbiol, 2, 680, 10.1046/j.1462-2920.2000.00150.x Maixner, 2006, Nitrite concentration influences the population structure of Nitrospira-like bacteria, Environ Microbiol, 8, 1487, 10.1111/j.1462-2920.2006.01033.x