Review on supercapacitors: Technologies and materials
Tóm tắt
Từ khóa
Tài liệu tham khảo
Miller JR, Simon P. Electrochemical capacitors for energy management. Science 2008;321(5889):651–2. https://dx.doi.org/10.1126/science.1158736 URL <https://www.sciencemag.org/content/321/5889/651.full>.
Pandolfo, 2006, Carbon properties and their role in supercapacitors, J Power Sources, 157, 11, 10.1016/j.jpowsour.2006.02.065
Kötz, 2000, Principles and applications of electrochemical capacitors, Electrochim Acta, 45, 2483, 10.1016/S0013-4686(00)00354-6
Sharma, 2010, A review on electrochemical double-layer capacitors, Energy Convers Manag, 51, 2901, 10.1016/j.enconman.2010.06.031
Simon, 2008, Nanostructured carbons: double-layer capacitance and more, Electrochem. Soc. Interface, 17, 38, 10.1149/2.F05081IF
Portet, 2004, Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications, Electrochim Acta, 49, 905, 10.1016/j.electacta.2003.09.043
Gogotsi, 2013
Wang, 2012, A review of electrode materials for electrochemical supercapacitors, Chem Soc Rev, 41, 797, 10.1039/C1CS15060J
Endo, 2001, High power electric double layer capacitor (EDLC׳s); from operating principle to pore size control in advanced activated carbons, Carbon Sci, 1, 117
Bagotsky, 2005
Zhang, 2009, Carbon-based materials as supercapacitor electrodes, Chem Soc Rev, 38, 2520, 10.1039/b813846j
Barbieri, 2005, Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon, 43, 1303, 10.1016/j.carbon.2005.01.001
Qu, 1998, Studies of activated carbons used in double-layer capacitors, J Power Sources, 74, 99, 10.1016/S0378-7753(98)00038-X
Gamby, 2001, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, J Power Sources, 101, 109, 10.1016/S0378-7753(01)00707-8
Shi, 1996, Activated carbons and double layer capacitance, Electrochim Acta, 41, 1633, 10.1016/0013-4686(95)00416-5
Qu, 2002, Studies of the activated carbons used in double-layer supercapacitors, J Power Sources, 109, 403, 10.1016/S0378-7753(02)00108-8
Kim, 2004, Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons, Carbon, 42, 1491, 10.1016/j.carbon.2004.01.049
Chmiola, 2006, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science (New York, N.Y.), 313, 1760, 10.1126/science.1132195
Largeot, 2008, Relation between the ion size and pore size for an electric double-layer capacitor, J Am Chem Soc, 130, 2730, 10.1021/ja7106178
García-Gómez, 2015, Constant capacitance in nanopores of carbon monoliths, Phys Chem Chem Phys, 17, 15687, 10.1039/C5CP01904D
Stoeckli, 2012, Pore size distribution and capacitance in microporous carbons, Phys Chem Chem Phys, 14, 11589, 10.1039/c2cp41545c
Centeno, 2012, The volumetric capacitance of microporous carbons in organic electrolyte, Electrochem Commun, 16, 34, 10.1016/j.elecom.2011.12.017
Vix-Guterl, 2005, Electrochemical energy storage in ordered porous carbon materials, Carbon, 43, 1293, 10.1016/j.carbon.2004.12.028
Huang, 2008, Theoretical model for nanoporous carbon supercapacitors, Angew Chem, 120, 530, 10.1002/ange.200703864
Feng, 2010, Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance, ACS Nano, 4, 2382, 10.1021/nn100126w
Augustyn, 2014, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ Sci, 7, 1597, 10.1039/c3ee44164d
Conway, 2003, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices, J Solid State Electrochem, 7, 637, 10.1007/s10008-003-0395-7
Naoi, 2008, New materials and new configurations for advanced electrochemical capacitors, Electrochem. Soc. Interface, 17, 34, 10.1149/2.F04081IF
Chuang, 2010, Effects of carbon nanotube grafting on the performance of electric double layer capacitors, Energy Fuels, 24, 6476, 10.1021/ef101208x
Zhu, 2011, Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications, Electrochim Acta, 56, 1366, 10.1016/j.electacta.2010.10.070
Jurewicz, 2004, Capacitance properties of ordered porous carbon materials prepared by a templating procedure, J Phys Chem Solids, 65, 287, 10.1016/j.jpcs.2003.10.024
Fernández, 2008, Performance of mesoporous carbons derived from poly (vinyl alcohol) in electrochemical capacitors, J Power …, 175, 675
Jiang, 2013, Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes, Electrochim Acta, 113, 481, 10.1016/j.electacta.2013.09.121
Du, 2013, Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications, Bioresour Technol, 149, 31, 10.1016/j.biortech.2013.09.026
Thambidurai, 2014, Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors a comparative investigation, Kor J Chem Eng, 31, 268, 10.1007/s11814-013-0228-z
Wei, 2012, Nanostructured activated carbons from natural precursors for electrical double layer capacitors, Nano Energy, 1, 552, 10.1016/j.nanoen.2012.05.002
Ersoy, 2001, Carbon coatings produced by high temperature chlorination of silicon carbide ceramics, Mater Res Innov, 5, 55, 10.1007/s100190100136
Gogotsi, 1997, Carbon coatings on silicon carbide by reaction with chlorine-containing gases, J Mater Chem, 7, 1841, 10.1039/a701126a
Cambaz, 2006, Formation of carbide-derived carbon on β-silicon carbide whiskers, J Am Ceram Soc, 89, 509, 10.1111/j.1551-2916.2005.00780.x
Gogotsi, 2003, Nanoporous carbide-derived carbon with tunable pore size, Nat Mater, 2, 591, 10.1038/nmat957
Yushin, 2006, Carbide derived carbon, 237
Dash, 2006, Titanium carbide derived nanoporous carbon for energy-related applications, Carbon, 44, 2489, 10.1016/j.carbon.2006.04.035
Kravchik, 2006, Structure of nanoporous carbon produced from boron carbide, Carbon, 44, 3263, 10.1016/j.carbon.2006.06.037
Erdemir, 2004, Effects of high-temperature hydrogenation treatment on sliding friction and wear behavior of carbide-derived carbon films, Surface and coatings technology, 188–189, 588, 10.1016/j.surfcoat.2004.07.052
Permann, 2006, Electrical double layer characteristics of nanoporous carbon derived from titanium carbide, Electrochim Acta, 51, 1274, 10.1016/j.electacta.2005.06.024
Chmiola, 2006, Effect of pore size and surface area of carbide derived carbons on specific capacitance, J Power Sources, 158, 765, 10.1016/j.jpowsour.2005.09.008
Taberna, 2003, Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors, J Electrochem Soc, 150, A292, 10.1149/1.1543948
Talapatra, 2006, Direct growth of aligned carbon nanotubes on bulk metals, Nat Nanotechnol, 1, 112, 10.1038/nnano.2006.56
Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, et al. Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 2007;104(34):13574–7.
Emmenegger, 2000, Carbon nanotube synthesized on metallic substrates, Appl Surf Sci, 452, 10.1016/S0169-4332(00)00232-4
Chen, 2002, Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors, Carbon, 40, 1193, 10.1016/S0008-6223(01)00266-4
Frackowiak, 2001, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 937, 10.1016/S0008-6223(00)00183-4
Frackowiak, 2002, Enhanced capacitance of carbon nanotubes through chemical activation, Chem Phys Lett, 361, 35, 10.1016/S0009-2614(02)00684-X
Frackowiak, 2000, Supercapacitor electrodes from multiwalled carbon nanotubes, Appl Phys Lett, 77, 2421, 10.1063/1.1290146
Niu, 1997, High power electrochemical capacitors based on carbon nanotube electrodes, Appl Phys Lett, 70, 1480, 10.1063/1.118568
Choi, 2001, Supercapacitors using single-walled carbon, Adv Mater, 13, 497, 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-H
Hughes, 2002, Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole, Adv Mater, 14, 382, 10.1002/1521-4095(20020304)14:5<382::AID-ADMA382>3.0.CO;2-Y
Frackowiak, 2002, Nanotubular materials as electrodes for supercapacitors, Fuel Process Technol, 77–78, 213, 10.1016/S0378-3820(02)00078-4
Hughes, 2002, Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole, Adv Mater, 14, 382, 10.1002/1521-4095(20020304)14:5<382::AID-ADMA382>3.0.CO;2-Y
Hughes, 2002, Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole, Chem Mater, 14, 1610, 10.1021/cm010744r
Arabale, 2003, Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide, Chem Phys Lett, 376, 207, 10.1016/S0009-2614(03)00946-1
Wu, 2012, Graphene/metal oxide composite electrode materials for energy storage, Nano Energy, 1, 107, 10.1016/j.nanoen.2011.11.001
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science (New York, N.Y.), 306, 666, 10.1126/science.1102896
Novoselov, 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197, 10.1038/nature04233
Geim, 2009, Graphene: status and prospects, Science (New York, N.Y.), 324, 1530, 10.1126/science.1158877
Chen, 2008, Mechanically strong, electrically conductive, and biocompatible graphene paper, Adv Mater, 20, 3557, 10.1002/adma.200800757
Pumera, 2010, Graphene-based nanomaterials and their electrochemistry, Chem Soc Rev, 39, 4146, 10.1039/c002690p
Vivekchand, 2008, Graphene-based electrochemical supercapacitors, J Chem Sci, 120, 9, 10.1007/s12039-008-0002-7
Stoller, 2008, Graphene-based ultracapacitors, Nano Lett, 6
Wang, 2009, Supercapacitor devices based on graphene materials, J Phys Chem C, 113, 13103, 10.1021/jp902214f
Xia, 2009, Measurement of the quantum capacitance of graphene, Nat Nanotechnol, 4, 505, 10.1038/nnano.2009.177
Liu, 2010, Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett, 4863, 10.1021/nl102661q
Li, 2014, The synthesis of graphene oxide nanostructures for supercapacitors: a simple route, J Mater Sci, 49, 2802, 10.1007/s10853-013-7986-1
Wang, 2009, Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode, Acs Nano, 3, 1745, 10.1021/nn900297m
Xu, 2010, Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage, Acs Nano, 4, 5019, 10.1021/nn1006539
He, 2010, A Co (OH) 2 graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries, Electrochem Comm, 12, 570, 10.1016/j.elecom.2010.02.002
Wang, 2010, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J Am Chem Soc, 132, 7472, 10.1021/ja102267j
Fan, 2010, A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors, Adv Mater (Deerfield Beach, Fla.), 22, 3723, 10.1002/adma.201001029
Jeong, 2010, Enhanced electric double layer capacitance of graphite oxide intercalated by poly (sodium 4-styrensulfonate) with high cycle stability, ACS …, 4, 0
Wang, 2010, Nanocrystal growth on graphene with various degrees of oxidation, J Am Chem Soc, 132, 3270, 10.1021/ja100329d
Yan, 2010, Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors, Carbon, 48, 1731, 10.1016/j.carbon.2010.01.014
Lee, 2010, Silicon nanoparticles-graphene paper composites for Li ion battery anodes, Chem Commun (Cambridge, England), 46, 2025, 10.1039/b919738a
Song, 2014, Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode, J Power Sources, 249, 48, 10.1016/j.jpowsour.2013.10.102
Deng, 2014, RuO2/graphene hybrid material for high performance electrochemical capacitor, J Power Sources, 248, 407, 10.1016/j.jpowsour.2013.09.081
Cai, 2014, Graphene nanosheets-tungsten oxides composite for supercapacitor electrode, Ceram Int, 40, 4109, 10.1016/j.ceramint.2013.08.065
Wang, 2014, A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors, J Colloid Interface Sci, 417, 270, 10.1016/j.jcis.2013.11.021
Gopalakrishnan, 2013, Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis, J Mater Chem A, 1, 7563, 10.1039/c3ta11385j
Liang, 2008, Mesoporous carbon materials: synthesis and modification, Angew Chem (International edition in English), 47, 3696, 10.1002/anie.200702046
Saha, 2014, Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon, Langmuir : ACS J Surf Colloids, 30, 900, 10.1021/la404112m
Kumagai, 2013, Electrical double-layer capacitance of micro- and mesoporous activated carbon prepared from rice husk and beet sugar, Electrochim Acta, 114, 617, 10.1016/j.electacta.2013.10.060
Ahn, 2006, Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates, Nanotechnology, 17, 2865, 10.1088/0957-4484/17/12/007
Patake, 2009, Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments, Appl Surf Sci, 255, 4192, 10.1016/j.apsusc.2008.11.005
Hu, 2002, Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors, J Power Sources, 108, 117, 10.1016/S0378-7753(02)00011-3
Yan, 2010, Preparation and electrochemical properties of lamellar MnO2 for supercapacitors, Mater Res Bull, 45, 210, 10.1016/j.materresbull.2009.09.016
Jiang, 2002, Electrochemical supercapacitor material based on manganese oxide, Electrochim Acta, 47, 2381, 10.1016/S0013-4686(02)00031-2
Patil, 2008, Chemically deposited nanocrystalline NiO thin films for supercapacitor application, Appl Surf Sci, 255, 2603, 10.1016/j.apsusc.2008.07.192
Nelson, 2003, A high-performance supercapacitor/battery hybrid incorporating templated mesoporous electrodes, J Electrochem Soc, 150, A1313, 10.1149/1.1603247
Kandalkar, 2008, Preparation of cobalt oxide thin films and its use in supercapacitor application, Appl Surf Sci, 254, 5540, 10.1016/j.apsusc.2008.02.163
Miura, 2004, Indium tin oxide/carbon composite electrode material for electrochemical supercapacitors, Electrochem Solid-State Lett, 7, A247, 10.1149/1.1763773
Hu, 2008, Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors, J Power Sources, 185, 1594, 10.1016/j.jpowsour.2008.08.017
da Silva, 2008, Electrochemical synthesis of vanadium oxide nanofibers, J Electrochem Soc, 155, E14, 10.1149/1.2804856
Zhou, 2009, Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material, J Phys Chem Solids, 70, 495, 10.1016/j.jpcs.2008.12.004
Nakayama, 2005, Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties, Langmuir, 21, 5907, 10.1021/la050114u
Babakhani, 2010, Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors, J Power Sources, 195, 2110, 10.1016/j.jpowsour.2009.10.045
Lee, 2010, RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors, Synth Metals, 160, 1055, 10.1016/j.synthmet.2010.02.026
Kim, 2006, Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications, J Electrochem Soc, 153, A383, 10.1149/1.2147406
Jia, 1996, Epitaxial growth of highly conductive RuO2 thin films on (100) Si, Appl Phys Lett, 68, 1069, 10.1063/1.115715
Sakiyama, 1993, Deposition and properties of reactively sputtered ruthenium dioxide films, J Electrochem Soc, 140, 834, 10.1149/1.2056168
Zheng, 1995, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J Electrochem Soc, 142, 9, 10.1149/1.2050077
Wu, 2002, Preparation and optimization of RuO2 -impregnated SnO2 xerogel supercapacitor, J Power Sources, 104, 62, 10.1016/S0378-7753(01)00873-4
Hu, 1996, Oxygen evolution and hypochlorite production on Ru–Pt binary oxides, J Appl Electrochem, 26, 72, 10.1007/BF00248191
Ramani, 2001, Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors, J Electrochem Soc, 148, A374, 10.1149/1.1357172
Ferro, 2004, Heterogeneous electron-transfer rate constants for fe(h(2)o)(6)(3+/2+) at metal oxide electrodes, J Phys Chem B, 108, 6398, 10.1021/jp049921c
Wen, 1992, Hydrogen and oxygen evolutions on RuIr binary oxides, J Electrochem Soc, 139, 2158, 10.1149/1.2221195
Conway, 1999
Zheng, 1996, High energy and high power density electrochemical capacitors, J Power Sources, 62, 155, 10.1016/S0378-7753(96)02424-X
Su, 2007, RuO 2/activated carbon composites as a positive electrode in an alkaline electrochemical capacitor, New Carbon Mater, 22, 0, 10.1016/S1872-5805(07)60007-9
Burke, 2000, Ultracapacitors: why, how, and where is the technology, J Power Sources, 91, 37, 10.1016/S0378-7753(00)00485-7
Yu, 2006, Synthesis of Ru/carbon nanocomposites by polyol process for electrochemical supercapacitor electrodes, Mater Lett, 60, 2453, 10.1016/j.matlet.2006.01.015
Seo, 2010, Effect of annealing temperature on electrochemical characteristics of ruthenium oxide/multi-walled carbon nanotube composites, Mater Sci Eng: B, 167, 65, 10.1016/j.mseb.2010.01.028
Zheng, 2008, Hydrousrutheniumoxide thin film electrodes prepared by cathodic electrodeposition for supercapacitors, Thin Solid Films, 516, 7381, 10.1016/j.tsf.2008.02.022
Kim, 2005, Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials, J Mater Chem, 15, 4914, 10.1039/b511869g
Lee, 2006, Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide, J Power Sources, 159, 1527, 10.1016/j.jpowsour.2005.11.063
Hu, 2004, How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, J Electrochem Soc, 151, A281, 10.1149/1.1639020
Long, 1999, Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids, Langmuir, 15, 780, 10.1021/la980785a
Sugimoto, 2005, Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy, J Phys Chem B, 109, 7330, 10.1021/jp044252o
Zheng, 1995, A new charge storage mechanism for electrochemical capacitors, J Electrochem Soc, 142, 14, 10.1149/1.2043984
Hu, 2006, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett, 6, 2690, 10.1021/nl061576a
Sugimoto, 2006, Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides, Electrochim Acta, 52, 1742, 10.1016/j.electacta.2006.02.054
Wen, 2009, Preparation and electrochemical performance of novel ruthenium-manganese oxide electrode materials for electrochemical capacitors, J Phys Chem Solids, 70, 816, 10.1016/j.jpcs.2009.03.015
Foelske, 2006, An X-ray photoelectron spectroscopy study of hydrous ruthenium oxide powders with various water contents for supercapacitors, Electrochem Solid-State Lett, 9, A268, 10.1149/1.2188078
Kim, 2002, Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method, J Power Sources, 104, 52, 10.1016/S0378-7753(01)00903-X
Subramanian, 2004, Mesoporous anhydrous RuO2 as a supercapacitor electrode material, Solid State Ionics, 175, 511, 10.1016/j.ssi.2004.01.070
Egashira, 2010, Pseudo-capacitance of composite electrode of ruthenium oxide with porous carbon in non-aqueous electrolyte containing imidazolium salt, J Power Sources, 195, 3036, 10.1016/j.jpowsour.2009.11.046
Lin, 2009, Superior capacitive characteristics of RuO2 nanorods grown on carbon nanotubes, Appl Surf Sci, 256, 1042, 10.1016/j.apsusc.2009.08.026
Takasu, 1997, Dip coated RuV oxide electrodes for electrochemical capacitors, J Electrochem Soc, 144, 2601, 10.1149/1.1837871
Yuan, 2007, Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor, J Power Sources, 173, 606, 10.1016/j.jpowsour.2007.04.034
Yong-gang, 2004, Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites, Electrochim Acta, 49, 1957, 10.1016/j.electacta.2003.12.023
Pang, 2000, novel electrode materials for thin-film ultracapacitors, J Electrochem Soc, 147, 444, 10.1149/1.1393216
Toupin, 2002, Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide, Chem Mater, 14, 3946, 10.1021/cm020408q
Toupin, 2004, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chem Mater, 16, 3184, 10.1021/cm049649j
Chang, 2007, In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications, J Power Sources, 166, 590, 10.1016/j.jpowsour.2007.01.036
Hu, 2002, Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition, Electrochem Commun, 4, 105, 10.1016/S1388-2481(01)00285-5
Messaoudi, 2001, Anodic behaviour of manganese in alkaline medium, Electrochim Acta, 46, 2487, 10.1016/S0013-4686(01)00449-2
Raymundo-Pinero, 2005, Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors, J Electrochem Soc, 152, A229, 10.1149/1.1834913
Ye, 2005, Electrochemical and capacitance properties of rod-shaped MnO[sub 2] for supercapacitor, J Electrochem Soc, 152, A1272, 10.1149/1.1904912
Kim, 2003, Synthesis and characterization of MnO[sub 2]-based mixed oxides as supercapacitors, J Electrochem Soc, 150, D56, 10.1149/1.1541675
Lee, 2007, Effects of iron addition on material characteristics and pseudo-capacitive behavior of Mn-oxide electrodes, J Electrochem Soc, 154, A875, 10.1149/1.2755880
Chang, 2009, Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes, Electrochim Acta, 54, 3278, 10.1016/j.electacta.2008.12.042
Wei, 2007, Manganese oxide films for electrochemical supercapacitors, J Mater Process Technol, 186, 356, 10.1016/j.jmatprotec.2007.01.003
Donne, 2010, Structure, morphology and electrochemical behaviour of manganese oxides prepared by controlled decomposition of permanganate, J Power Sources, 195, 367, 10.1016/j.jpowsour.2009.06.103
Chou, 2006, Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films, J Power Sources, 162, 727, 10.1016/j.jpowsour.2006.06.033
Brousse, 2006, Crystalline MnO[sub 2] as possible alternatives to amorphous compounds in electrochemical supercapacitors, J Electrochem Soc, 153, A2171, 10.1149/1.2352197
Zolfaghari, 2007, Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method, Electrochim Acta, 52, 2806, 10.1016/j.electacta.2006.10.035
Ghaemi, 2008, Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode, Electrochim Acta, 53, 4607, 10.1016/j.electacta.2007.12.040
Nagarajan, 2007, Electrochemical capacitance of MnOx films, Mater Chem Phys, 103, 47, 10.1016/j.matchemphys.2007.01.005
Hu, 2003, Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition, J Electrochem Soc, 150, A1079, 10.1149/1.1587725
Nagarajan, 2006, Cathodic electrodeposition of MnOx films for electrochemical supercapacitors, Electrochim Acta, 51, 3039, 10.1016/j.electacta.2005.08.042
Chang, 2008, Manganese films electrodeposited at different potentials and temperatures in ionic liquid and their application as electrode materials for supercapacitors, Electrochim Acta, 53, 4447, 10.1016/j.electacta.2008.01.036
Liu, 2008, Electrodeposition of manganese dioxide in three-dimensional poly(3,4-ethylenedioxythiophene)poly(styrene sulfonic acid) polyaniline for supercapacitor, J Power Sources, 182, 383, 10.1016/j.jpowsour.2008.04.008
Nam, 2009, Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate, J Power Sources, 188, 323, 10.1016/j.jpowsour.2008.11.133
Chin, 2002, Material and electrochemical characterization of tetrapropylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors, J Electrochem Soc, 149, A379, 10.1149/1.1453406
Shinomiya, 2006, Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide, Electrochim Acta, 51, 4412, 10.1016/j.electacta.2005.12.025
Broughton, 2004, Investigation of thin sputtered Mn films for electrochemical capacitors, Electrochim Acta, 49, 4439, 10.1016/j.electacta.2004.04.035
Rajendra Prasad, 2004, Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors, Electrochem Commun, 6, 1004, 10.1016/j.elecom.2004.07.017
Reddy, 2004, Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material, J Power Sources, 132, 315, 10.1016/j.jpowsour.2003.12.054
Levine K. Synthesis, characterization and properties of polypyrrole/polyimide composites [Ph.D. thesis]. University of Cincinnati; 2002.
Arbizzani, 1996, Polymer-based redox supercapacitors: a comparative study, Electrochim Acta, 41, 21, 10.1016/0013-4686(95)00289-Q
Mastragostino, 2001, Polymer-based supercapacitors, J Power Sources, 97-98, 812, 10.1016/S0378-7753(01)00613-9
Arbizzani, 2001, New trends in electrochemical supercapacitors, J Power Sources, 100, 164, 10.1016/S0378-7753(01)00892-8
Frackowiak, 2006, Supercapacitors based on conducting polymers/nanotubes composites, J Power Sources, 153, 413, 10.1016/j.jpowsour.2005.05.030
Haushalter, 1983, Electron-less metallization of organic polymers using the polymer as a redox reagent, Thin Solid Films, 102, 161, 10.1016/0040-6090(83)90149-9
Pell, 2001, Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour, J Electroanal Chem, 500, 121, 10.1016/S0022-0728(00)00423-X
Halper M, Ellenbogen J. Supercapacitors: a brief overview. Technical report March, MITRE Nanosystems Group; 2006. URL 〈http://www.srv1.mitre.org/work/tech_papers/tech_papers_06/06_0667/06_0667.pdfhttp://www.mitre.org/sites/default/files/pdf/06_0667.pdf〉.
Galiński, 2006, Ionic liquids as electrolytes, Electrochim Acta, 51, 5567, 10.1016/j.electacta.2006.03.016
Liu, 2010, Ionic liquids in surface electrochemistry, Phys Chem Chem Phys: PCCP, 12, 1648, 10.1039/b921469k
Armand, 2009, Ionic-liquid materials for the electrochemical challenges of the future, Nat Mater, 8, 621, 10.1038/nmat2448
Cericola, 2012, Hybridization of rechargeable batteries and electrochemical capacitors: principles and limits, Electrochim Acta, 72, 1, 10.1016/j.electacta.2012.03.151
Belyakov AI. Asymmetric electrochemical supercapacitors with aqueous electrolytes. In: ESSCAP׳08, vol. 3, Roma; 2008.
Sivakkumar, 2012, Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode, Electrochim Acta, 65, 280, 10.1016/j.electacta.2012.01.076
Díaz, 2014, Progress in the use of ionic liquids as electrolyte membranes in fuel cells, J Membr Sci, 469, 379, 10.1016/j.memsci.2014.06.033