Review on supercapacitors: Technologies and materials

Renewable and Sustainable Energy Reviews - Tập 58 - Trang 1189-1206 - 2016
Ander González1,2, Eider Goikolea1, Jon Andoni Barrena2, Roman Mysyk1
1CIC Energigune, Albert Einstein 48, 01510 Miñano, Spain
2Mondragon Unibertsitatea, Loramendi 4, 20500 Arrasate, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Miller JR, Simon P. Electrochemical capacitors for energy management. Science 2008;321(5889):651–2. https://dx.doi.org/10.1126/science.1158736 URL <https://www.sciencemag.org/content/321/5889/651.full>.

Pandolfo, 2006, Carbon properties and their role in supercapacitors, J Power Sources, 157, 11, 10.1016/j.jpowsour.2006.02.065

Kötz, 2000, Principles and applications of electrochemical capacitors, Electrochim Acta, 45, 2483, 10.1016/S0013-4686(00)00354-6

Sharma, 2010, A review on electrochemical double-layer capacitors, Energy Convers Manag, 51, 2901, 10.1016/j.enconman.2010.06.031

Simon, 2008, Nanostructured carbons: double-layer capacitance and more, Electrochem. Soc. Interface, 17, 38, 10.1149/2.F05081IF

Portet, 2004, Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications, Electrochim Acta, 49, 905, 10.1016/j.electacta.2003.09.043

Gogotsi, 2013

Wang, 2012, A review of electrode materials for electrochemical supercapacitors, Chem Soc Rev, 41, 797, 10.1039/C1CS15060J

Endo, 2001, High power electric double layer capacitor (EDLC׳s); from operating principle to pore size control in advanced activated carbons, Carbon Sci, 1, 117

Bagotsky, 2005

Zhang, 2009, Carbon-based materials as supercapacitor electrodes, Chem Soc Rev, 38, 2520, 10.1039/b813846j

Barbieri, 2005, Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon, 43, 1303, 10.1016/j.carbon.2005.01.001

Qu, 1998, Studies of activated carbons used in double-layer capacitors, J Power Sources, 74, 99, 10.1016/S0378-7753(98)00038-X

Gamby, 2001, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, J Power Sources, 101, 109, 10.1016/S0378-7753(01)00707-8

Shi, 1996, Activated carbons and double layer capacitance, Electrochim Acta, 41, 1633, 10.1016/0013-4686(95)00416-5

Qu, 2002, Studies of the activated carbons used in double-layer supercapacitors, J Power Sources, 109, 403, 10.1016/S0378-7753(02)00108-8

Kim, 2004, Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons, Carbon, 42, 1491, 10.1016/j.carbon.2004.01.049

Chmiola, 2006, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science (New York, N.Y.), 313, 1760, 10.1126/science.1132195

Largeot, 2008, Relation between the ion size and pore size for an electric double-layer capacitor, J Am Chem Soc, 130, 2730, 10.1021/ja7106178

García-Gómez, 2015, Constant capacitance in nanopores of carbon monoliths, Phys Chem Chem Phys, 17, 15687, 10.1039/C5CP01904D

Stoeckli, 2012, Pore size distribution and capacitance in microporous carbons, Phys Chem Chem Phys, 14, 11589, 10.1039/c2cp41545c

Centeno, 2012, The volumetric capacitance of microporous carbons in organic electrolyte, Electrochem Commun, 16, 34, 10.1016/j.elecom.2011.12.017

Vix-Guterl, 2005, Electrochemical energy storage in ordered porous carbon materials, Carbon, 43, 1293, 10.1016/j.carbon.2004.12.028

Huang, 2008, Theoretical model for nanoporous carbon supercapacitors, Angew Chem, 120, 530, 10.1002/ange.200703864

Feng, 2010, Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance, ACS Nano, 4, 2382, 10.1021/nn100126w

Augustyn, 2014, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ Sci, 7, 1597, 10.1039/c3ee44164d

Conway, 2003, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices, J Solid State Electrochem, 7, 637, 10.1007/s10008-003-0395-7

Naoi, 2008, New materials and new configurations for advanced electrochemical capacitors, Electrochem. Soc. Interface, 17, 34, 10.1149/2.F04081IF

Chuang, 2010, Effects of carbon nanotube grafting on the performance of electric double layer capacitors, Energy Fuels, 24, 6476, 10.1021/ef101208x

Zhu, 2011, Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications, Electrochim Acta, 56, 1366, 10.1016/j.electacta.2010.10.070

Simon, 2008, Materials for electrochemical capacitors, Nat Mater, 7, 845, 10.1038/nmat2297

Jurewicz, 2004, Capacitance properties of ordered porous carbon materials prepared by a templating procedure, J Phys Chem Solids, 65, 287, 10.1016/j.jpcs.2003.10.024

Fernández, 2008, Performance of mesoporous carbons derived from poly (vinyl alcohol) in electrochemical capacitors, J Power …, 175, 675

Jiang, 2013, Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes, Electrochim Acta, 113, 481, 10.1016/j.electacta.2013.09.121

Du, 2013, Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications, Bioresour Technol, 149, 31, 10.1016/j.biortech.2013.09.026

Thambidurai, 2014, Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors a comparative investigation, Kor J Chem Eng, 31, 268, 10.1007/s11814-013-0228-z

Wei, 2012, Nanostructured activated carbons from natural precursors for electrical double layer capacitors, Nano Energy, 1, 552, 10.1016/j.nanoen.2012.05.002

Ersoy, 2001, Carbon coatings produced by high temperature chlorination of silicon carbide ceramics, Mater Res Innov, 5, 55, 10.1007/s100190100136

Gogotsi, 1997, Carbon coatings on silicon carbide by reaction with chlorine-containing gases, J Mater Chem, 7, 1841, 10.1039/a701126a

Cambaz, 2006, Formation of carbide-derived carbon on β-silicon carbide whiskers, J Am Ceram Soc, 89, 509, 10.1111/j.1551-2916.2005.00780.x

Gogotsi, 2003, Nanoporous carbide-derived carbon with tunable pore size, Nat Mater, 2, 591, 10.1038/nmat957

Yushin, 2006, Carbide derived carbon, 237

Dash, 2006, Titanium carbide derived nanoporous carbon for energy-related applications, Carbon, 44, 2489, 10.1016/j.carbon.2006.04.035

Kravchik, 2006, Structure of nanoporous carbon produced from boron carbide, Carbon, 44, 3263, 10.1016/j.carbon.2006.06.037

Erdemir, 2004, Effects of high-temperature hydrogenation treatment on sliding friction and wear behavior of carbide-derived carbon films, Surface and coatings technology, 188–189, 588, 10.1016/j.surfcoat.2004.07.052

Permann, 2006, Electrical double layer characteristics of nanoporous carbon derived from titanium carbide, Electrochim Acta, 51, 1274, 10.1016/j.electacta.2005.06.024

Chmiola, 2006, Effect of pore size and surface area of carbide derived carbons on specific capacitance, J Power Sources, 158, 765, 10.1016/j.jpowsour.2005.09.008

Taberna, 2003, Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors, J Electrochem Soc, 150, A292, 10.1149/1.1543948

Talapatra, 2006, Direct growth of aligned carbon nanotubes on bulk metals, Nat Nanotechnol, 1, 112, 10.1038/nnano.2006.56

Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, et al. Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 2007;104(34):13574–7.

Emmenegger, 2000, Carbon nanotube synthesized on metallic substrates, Appl Surf Sci, 452, 10.1016/S0169-4332(00)00232-4

Chen, 2002, Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors, Carbon, 40, 1193, 10.1016/S0008-6223(01)00266-4

Frackowiak, 2001, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 937, 10.1016/S0008-6223(00)00183-4

Frackowiak, 2002, Enhanced capacitance of carbon nanotubes through chemical activation, Chem Phys Lett, 361, 35, 10.1016/S0009-2614(02)00684-X

Frackowiak, 2000, Supercapacitor electrodes from multiwalled carbon nanotubes, Appl Phys Lett, 77, 2421, 10.1063/1.1290146

Niu, 1997, High power electrochemical capacitors based on carbon nanotube electrodes, Appl Phys Lett, 70, 1480, 10.1063/1.118568

Choi, 2001, Supercapacitors using single-walled carbon, Adv Mater, 13, 497, 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-H

Hughes, 2002, Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole, Adv Mater, 14, 382, 10.1002/1521-4095(20020304)14:5<382::AID-ADMA382>3.0.CO;2-Y

Frackowiak, 2002, Nanotubular materials as electrodes for supercapacitors, Fuel Process Technol, 77–78, 213, 10.1016/S0378-3820(02)00078-4

Hughes, 2002, Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole, Adv Mater, 14, 382, 10.1002/1521-4095(20020304)14:5<382::AID-ADMA382>3.0.CO;2-Y

Hughes, 2002, Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole, Chem Mater, 14, 1610, 10.1021/cm010744r

Arabale, 2003, Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide, Chem Phys Lett, 376, 207, 10.1016/S0009-2614(03)00946-1

Wu, 2012, Graphene/metal oxide composite electrode materials for energy storage, Nano Energy, 1, 107, 10.1016/j.nanoen.2011.11.001

Novoselov, 2004, Electric field effect in atomically thin carbon films, Science (New York, N.Y.), 306, 666, 10.1126/science.1102896

Novoselov, 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197, 10.1038/nature04233

Geim, 2007, The rise of graphene, Nat Mater, 183, 10.1038/nmat1849

Geim, 2009, Graphene: status and prospects, Science (New York, N.Y.), 324, 1530, 10.1126/science.1158877

Chen, 2008, Mechanically strong, electrically conductive, and biocompatible graphene paper, Adv Mater, 20, 3557, 10.1002/adma.200800757

Pumera, 2010, Graphene-based nanomaterials and their electrochemistry, Chem Soc Rev, 39, 4146, 10.1039/c002690p

Vivekchand, 2008, Graphene-based electrochemical supercapacitors, J Chem Sci, 120, 9, 10.1007/s12039-008-0002-7

Stoller, 2008, Graphene-based ultracapacitors, Nano Lett, 6

Wang, 2009, Supercapacitor devices based on graphene materials, J Phys Chem C, 113, 13103, 10.1021/jp902214f

Xia, 2009, Measurement of the quantum capacitance of graphene, Nat Nanotechnol, 4, 505, 10.1038/nnano.2009.177

Liu, 2010, Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett, 4863, 10.1021/nl102661q

Li, 2014, The synthesis of graphene oxide nanostructures for supercapacitors: a simple route, J Mater Sci, 49, 2802, 10.1007/s10853-013-7986-1

Wang, 2009, Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode, Acs Nano, 3, 1745, 10.1021/nn900297m

Xu, 2010, Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage, Acs Nano, 4, 5019, 10.1021/nn1006539

He, 2010, A Co (OH) 2 graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries, Electrochem Comm, 12, 570, 10.1016/j.elecom.2010.02.002

Wang, 2010, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J Am Chem Soc, 132, 7472, 10.1021/ja102267j

Fan, 2010, A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors, Adv Mater (Deerfield Beach, Fla.), 22, 3723, 10.1002/adma.201001029

Jeong, 2010, Enhanced electric double layer capacitance of graphite oxide intercalated by poly (sodium 4-styrensulfonate) with high cycle stability, ACS …, 4, 0

Wang, 2010, Nanocrystal growth on graphene with various degrees of oxidation, J Am Chem Soc, 132, 3270, 10.1021/ja100329d

Yan, 2010, Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors, Carbon, 48, 1731, 10.1016/j.carbon.2010.01.014

Lee, 2010, Silicon nanoparticles-graphene paper composites for Li ion battery anodes, Chem Commun (Cambridge, England), 46, 2025, 10.1039/b919738a

Song, 2014, Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode, J Power Sources, 249, 48, 10.1016/j.jpowsour.2013.10.102

Deng, 2014, RuO2/graphene hybrid material for high performance electrochemical capacitor, J Power Sources, 248, 407, 10.1016/j.jpowsour.2013.09.081

Cai, 2014, Graphene nanosheets-tungsten oxides composite for supercapacitor electrode, Ceram Int, 40, 4109, 10.1016/j.ceramint.2013.08.065

Wang, 2014, A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors, J Colloid Interface Sci, 417, 270, 10.1016/j.jcis.2013.11.021

Gopalakrishnan, 2013, Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis, J Mater Chem A, 1, 7563, 10.1039/c3ta11385j

Liang, 2008, Mesoporous carbon materials: synthesis and modification, Angew Chem (International edition in English), 47, 3696, 10.1002/anie.200702046

Saha, 2014, Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon, Langmuir : ACS J Surf Colloids, 30, 900, 10.1021/la404112m

Kumagai, 2013, Electrical double-layer capacitance of micro- and mesoporous activated carbon prepared from rice husk and beet sugar, Electrochim Acta, 114, 617, 10.1016/j.electacta.2013.10.060

Ahn, 2006, Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates, Nanotechnology, 17, 2865, 10.1088/0957-4484/17/12/007

Patake, 2009, Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments, Appl Surf Sci, 255, 4192, 10.1016/j.apsusc.2008.11.005

Hu, 2002, Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors, J Power Sources, 108, 117, 10.1016/S0378-7753(02)00011-3

Yan, 2010, Preparation and electrochemical properties of lamellar MnO2 for supercapacitors, Mater Res Bull, 45, 210, 10.1016/j.materresbull.2009.09.016

Jiang, 2002, Electrochemical supercapacitor material based on manganese oxide, Electrochim Acta, 47, 2381, 10.1016/S0013-4686(02)00031-2

Patil, 2008, Chemically deposited nanocrystalline NiO thin films for supercapacitor application, Appl Surf Sci, 255, 2603, 10.1016/j.apsusc.2008.07.192

Nelson, 2003, A high-performance supercapacitor/battery hybrid incorporating templated mesoporous electrodes, J Electrochem Soc, 150, A1313, 10.1149/1.1603247

Kandalkar, 2008, Preparation of cobalt oxide thin films and its use in supercapacitor application, Appl Surf Sci, 254, 5540, 10.1016/j.apsusc.2008.02.163

Miura, 2004, Indium tin oxide/carbon composite electrode material for electrochemical supercapacitors, Electrochem Solid-State Lett, 7, A247, 10.1149/1.1763773

Hu, 2008, Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors, J Power Sources, 185, 1594, 10.1016/j.jpowsour.2008.08.017

da Silva, 2008, Electrochemical synthesis of vanadium oxide nanofibers, J Electrochem Soc, 155, E14, 10.1149/1.2804856

Zhou, 2009, Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material, J Phys Chem Solids, 70, 495, 10.1016/j.jpcs.2008.12.004

Nakayama, 2005, Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties, Langmuir, 21, 5907, 10.1021/la050114u

Babakhani, 2010, Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors, J Power Sources, 195, 2110, 10.1016/j.jpowsour.2009.10.045

Lee, 2010, RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors, Synth Metals, 160, 1055, 10.1016/j.synthmet.2010.02.026

Kim, 2006, Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications, J Electrochem Soc, 153, A383, 10.1149/1.2147406

Jia, 1996, Epitaxial growth of highly conductive RuO2 thin films on (100) Si, Appl Phys Lett, 68, 1069, 10.1063/1.115715

Sakiyama, 1993, Deposition and properties of reactively sputtered ruthenium dioxide films, J Electrochem Soc, 140, 834, 10.1149/1.2056168

Zheng, 1995, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J Electrochem Soc, 142, 9, 10.1149/1.2050077

Wu, 2002, Preparation and optimization of RuO2 -impregnated SnO2 xerogel supercapacitor, J Power Sources, 104, 62, 10.1016/S0378-7753(01)00873-4

Hu, 1996, Oxygen evolution and hypochlorite production on Ru–Pt binary oxides, J Appl Electrochem, 26, 72, 10.1007/BF00248191

Ramani, 2001, Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors, J Electrochem Soc, 148, A374, 10.1149/1.1357172

Ferro, 2004, Heterogeneous electron-transfer rate constants for fe(h(2)o)(6)(3+/2+) at metal oxide electrodes, J Phys Chem B, 108, 6398, 10.1021/jp049921c

Wen, 1992, Hydrogen and oxygen evolutions on RuIr binary oxides, J Electrochem Soc, 139, 2158, 10.1149/1.2221195

Conway, 1999

Zheng, 1996, High energy and high power density electrochemical capacitors, J Power Sources, 62, 155, 10.1016/S0378-7753(96)02424-X

Su, 2007, RuO 2/activated carbon composites as a positive electrode in an alkaline electrochemical capacitor, New Carbon Mater, 22, 0, 10.1016/S1872-5805(07)60007-9

Burke, 2000, Ultracapacitors: why, how, and where is the technology, J Power Sources, 91, 37, 10.1016/S0378-7753(00)00485-7

Yu, 2006, Synthesis of Ru/carbon nanocomposites by polyol process for electrochemical supercapacitor electrodes, Mater Lett, 60, 2453, 10.1016/j.matlet.2006.01.015

Seo, 2010, Effect of annealing temperature on electrochemical characteristics of ruthenium oxide/multi-walled carbon nanotube composites, Mater Sci Eng: B, 167, 65, 10.1016/j.mseb.2010.01.028

Zheng, 2008, Hydrousrutheniumoxide thin film electrodes prepared by cathodic electrodeposition for supercapacitors, Thin Solid Films, 516, 7381, 10.1016/j.tsf.2008.02.022

Kim, 2005, Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials, J Mater Chem, 15, 4914, 10.1039/b511869g

Lee, 2006, Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide, J Power Sources, 159, 1527, 10.1016/j.jpowsour.2005.11.063

Hu, 2004, How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, J Electrochem Soc, 151, A281, 10.1149/1.1639020

Long, 1999, Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids, Langmuir, 15, 780, 10.1021/la980785a

Sugimoto, 2005, Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy, J Phys Chem B, 109, 7330, 10.1021/jp044252o

Zheng, 1995, A new charge storage mechanism for electrochemical capacitors, J Electrochem Soc, 142, 14, 10.1149/1.2043984

McKeown, 1999, Structure of hydrous ruthenium oxides, J Phys Chem B, 103, 4825, 10.1021/jp990096n

Hu, 2006, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett, 6, 2690, 10.1021/nl061576a

Sugimoto, 2006, Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides, Electrochim Acta, 52, 1742, 10.1016/j.electacta.2006.02.054

Wen, 2009, Preparation and electrochemical performance of novel ruthenium-manganese oxide electrode materials for electrochemical capacitors, J Phys Chem Solids, 70, 816, 10.1016/j.jpcs.2009.03.015

Foelske, 2006, An X-ray photoelectron spectroscopy study of hydrous ruthenium oxide powders with various water contents for supercapacitors, Electrochem Solid-State Lett, 9, A268, 10.1149/1.2188078

Kim, 2002, Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method, J Power Sources, 104, 52, 10.1016/S0378-7753(01)00903-X

Subramanian, 2004, Mesoporous anhydrous RuO2 as a supercapacitor electrode material, Solid State Ionics, 175, 511, 10.1016/j.ssi.2004.01.070

Egashira, 2010, Pseudo-capacitance of composite electrode of ruthenium oxide with porous carbon in non-aqueous electrolyte containing imidazolium salt, J Power Sources, 195, 3036, 10.1016/j.jpowsour.2009.11.046

Lin, 2009, Superior capacitive characteristics of RuO2 nanorods grown on carbon nanotubes, Appl Surf Sci, 256, 1042, 10.1016/j.apsusc.2009.08.026

Takasu, 1997, Dip coated RuV oxide electrodes for electrochemical capacitors, J Electrochem Soc, 144, 2601, 10.1149/1.1837871

Yuan, 2007, Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor, J Power Sources, 173, 606, 10.1016/j.jpowsour.2007.04.034

Yong-gang, 2004, Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites, Electrochim Acta, 49, 1957, 10.1016/j.electacta.2003.12.023

Pang, 2000, novel electrode materials for thin-film ultracapacitors, J Electrochem Soc, 147, 444, 10.1149/1.1393216

Toupin, 2002, Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide, Chem Mater, 14, 3946, 10.1021/cm020408q

Toupin, 2004, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chem Mater, 16, 3184, 10.1021/cm049649j

Chang, 2007, In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications, J Power Sources, 166, 590, 10.1016/j.jpowsour.2007.01.036

Hu, 2002, Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition, Electrochem Commun, 4, 105, 10.1016/S1388-2481(01)00285-5

Messaoudi, 2001, Anodic behaviour of manganese in alkaline medium, Electrochim Acta, 46, 2487, 10.1016/S0013-4686(01)00449-2

Raymundo-Pinero, 2005, Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors, J Electrochem Soc, 152, A229, 10.1149/1.1834913

Ye, 2005, Electrochemical and capacitance properties of rod-shaped MnO[sub 2] for supercapacitor, J Electrochem Soc, 152, A1272, 10.1149/1.1904912

Kim, 2003, Synthesis and characterization of MnO[sub 2]-based mixed oxides as supercapacitors, J Electrochem Soc, 150, D56, 10.1149/1.1541675

Lee, 2007, Effects of iron addition on material characteristics and pseudo-capacitive behavior of Mn-oxide electrodes, J Electrochem Soc, 154, A875, 10.1149/1.2755880

Chang, 2009, Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes, Electrochim Acta, 54, 3278, 10.1016/j.electacta.2008.12.042

Wei, 2007, Manganese oxide films for electrochemical supercapacitors, J Mater Process Technol, 186, 356, 10.1016/j.jmatprotec.2007.01.003

Donne, 2010, Structure, morphology and electrochemical behaviour of manganese oxides prepared by controlled decomposition of permanganate, J Power Sources, 195, 367, 10.1016/j.jpowsour.2009.06.103

Chou, 2006, Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films, J Power Sources, 162, 727, 10.1016/j.jpowsour.2006.06.033

Brousse, 2006, Crystalline MnO[sub 2] as possible alternatives to amorphous compounds in electrochemical supercapacitors, J Electrochem Soc, 153, A2171, 10.1149/1.2352197

Zolfaghari, 2007, Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method, Electrochim Acta, 52, 2806, 10.1016/j.electacta.2006.10.035

Ghaemi, 2008, Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode, Electrochim Acta, 53, 4607, 10.1016/j.electacta.2007.12.040

Nagarajan, 2007, Electrochemical capacitance of MnOx films, Mater Chem Phys, 103, 47, 10.1016/j.matchemphys.2007.01.005

Hu, 2003, Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition, J Electrochem Soc, 150, A1079, 10.1149/1.1587725

Nagarajan, 2006, Cathodic electrodeposition of MnOx films for electrochemical supercapacitors, Electrochim Acta, 51, 3039, 10.1016/j.electacta.2005.08.042

Chang, 2008, Manganese films electrodeposited at different potentials and temperatures in ionic liquid and their application as electrode materials for supercapacitors, Electrochim Acta, 53, 4447, 10.1016/j.electacta.2008.01.036

Liu, 2008, Electrodeposition of manganese dioxide in three-dimensional poly(3,4-ethylenedioxythiophene)poly(styrene sulfonic acid) polyaniline for supercapacitor, J Power Sources, 182, 383, 10.1016/j.jpowsour.2008.04.008

Nam, 2009, Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate, J Power Sources, 188, 323, 10.1016/j.jpowsour.2008.11.133

Chin, 2002, Material and electrochemical characterization of tetrapropylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors, J Electrochem Soc, 149, A379, 10.1149/1.1453406

Shinomiya, 2006, Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide, Electrochim Acta, 51, 4412, 10.1016/j.electacta.2005.12.025

Broughton, 2004, Investigation of thin sputtered Mn films for electrochemical capacitors, Electrochim Acta, 49, 4439, 10.1016/j.electacta.2004.04.035

Rajendra Prasad, 2004, Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors, Electrochem Commun, 6, 1004, 10.1016/j.elecom.2004.07.017

Reddy, 2004, Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material, J Power Sources, 132, 315, 10.1016/j.jpowsour.2003.12.054

Levine K. Synthesis, characterization and properties of polypyrrole/polyimide composites [Ph.D. thesis]. University of Cincinnati; 2002.

Arbizzani, 1996, Polymer-based redox supercapacitors: a comparative study, Electrochim Acta, 41, 21, 10.1016/0013-4686(95)00289-Q

Mastragostino, 2001, Polymer-based supercapacitors, J Power Sources, 97-98, 812, 10.1016/S0378-7753(01)00613-9

Arbizzani, 2001, New trends in electrochemical supercapacitors, J Power Sources, 100, 164, 10.1016/S0378-7753(01)00892-8

Frackowiak, 2006, Supercapacitors based on conducting polymers/nanotubes composites, J Power Sources, 153, 413, 10.1016/j.jpowsour.2005.05.030

Haushalter, 1983, Electron-less metallization of organic polymers using the polymer as a redox reagent, Thin Solid Films, 102, 161, 10.1016/0040-6090(83)90149-9

Pell, 2001, Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour, J Electroanal Chem, 500, 121, 10.1016/S0022-0728(00)00423-X

Halper M, Ellenbogen J. Supercapacitors: a brief overview. Technical report March, MITRE Nanosystems Group; 2006. URL 〈http://www.srv1.mitre.org/work/tech_papers/tech_papers_06/06_0667/06_0667.pdfhttp://www.mitre.org/sites/default/files/pdf/06_0667.pdf〉.

Galiński, 2006, Ionic liquids as electrolytes, Electrochim Acta, 51, 5567, 10.1016/j.electacta.2006.03.016

Liu, 2010, Ionic liquids in surface electrochemistry, Phys Chem Chem Phys: PCCP, 12, 1648, 10.1039/b921469k

Armand, 2009, Ionic-liquid materials for the electrochemical challenges of the future, Nat Mater, 8, 621, 10.1038/nmat2448

Cericola, 2012, Hybridization of rechargeable batteries and electrochemical capacitors: principles and limits, Electrochim Acta, 72, 1, 10.1016/j.electacta.2012.03.151

Miller JM. Ultracapacitor applications, IET; 2011.

Belyakov AI. Asymmetric electrochemical supercapacitors with aqueous electrolytes. In: ESSCAP׳08, vol. 3, Roma; 2008.

Sivakkumar, 2012, Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode, Electrochim Acta, 65, 280, 10.1016/j.electacta.2012.01.076

Christen, 2000, Theory of Ragone plots, J Power Sources, 91, 210, 10.1016/S0378-7753(00)00474-2

Díaz, 2014, Progress in the use of ionic liquids as electrolyte membranes in fuel cells, J Membr Sci, 469, 379, 10.1016/j.memsci.2014.06.033

Chen, 2014, Water-soluble inorganic salt with ultrahigh specific capacitance, J Colloid Interface Sci, 416, 172, 10.1016/j.jcis.2013.10.044