Comparative Evaluation of Waste Cooking Oil and Waste Engine Oil Rejuvenated Asphalt Concrete Mixtures
Tóm tắt
In road construction, different types of waste oil have been recommended to overcome the stiffening effect of reclaimed asphalt pavement content. However, the selection of an effective rejuvenator based on a comparative study can lead to using the resources more efficiently. In this study, waste cooking oil and waste engine oil are used to rejuvenate three different percentages (30%, 40%, and 50%) of reclaimed asphalt pavement following the current maximum industrial adaptability. The waste oil rejuvenated mixtures are compared to the fresh mixture, and mixtures rejuvenated with commercial rejuvenator. The moisture sensitivity, indirect tensile strength, and resilient modulus of the various asphalt mixtures are analyzed. Based on the statistical analyses and overall ranking, it is concluded that 7% of waste engine oil performs better till 40% of reclaimed asphalt pavement, whereas 13% of waste cooking oil can be used till 50% of reclaimed asphalt pavement.
Tài liệu tham khảo
Giani, M.I.; Dotelli, G.; Brandini, N.; Zampori, L.: Comparative life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling. Resour. Conserv. Recycl. 104, 224–238 (2015). https://doi.org/10.1016/j.resconrec.2015.08.006
Jahanbakhsh, H.; Karimi, M.M.; Naseri, H.; Nejad, F.M.: Sustainable asphalt concrete containing high reclaimed asphalt pavements and recycling agents: performance assessment, cost analysis, and environmental impact. J. Clean. Prod. 244, 118837 (2020). https://doi.org/10.1016/j.jclepro.2019.118837
Zaumanisa, M.; Mallicka, R.B.; Frankb, R.: 100% recycled hot mix asphalt: a review and analysis. Resour. Conserv. Recycl. 92, 230–245 (2014). https://doi.org/10.1016/j.resconrec.2014.07.007
Mamun, A.; Arifuzzaman, M.; Taha, R.: Nano scale aging characterization of carbon nanotube modified asphalt binders. In: Advances in Materials and Pavement Prediction: Papers from the International Conference on Advances in Materials and Pavement Performance Prediction (am3p 2018), 16–18 Apr 2018, Doha, Qatar, p. 403 (2018)
Mogawer, W.; Bennert, T.; Daniel, J.S.; Bonaquist, R.; Austerman, A.; Booshehrian, A.: Performance characteristics of plant produced high rap mixtures. Road Mater. Pavement Des. 13(sup1), 183–208 (2012)
Lins, V.; Araújo, M.; Yoshida, M.; Ferraz, V.; Andrada, D.; Lameiras, F.: Photodegradation of hot-mix asphalt. Fuel 87(15–16), 3254–3261 (2008)
García, A.; Schlangen, E.; Van de Ven, M.: Properties of capsules containing rejuvenators for their use in asphalt concrete. Fuel 90(2), 583–591 (2011)
Antunes, V.; Freire, A.C.; Neves, J.: A review on the effect of RAP recycling on bituminous mixtures properties and the viability of multi-recycling. Constr. Build. Mater. 211, 453–469 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.258
Devulapalli, L.; Kothandaraman, S.; Sarang, G.: Evaluation of rejuvenator’s effectiveness on the reclaimed asphalt pavement incorporated stone matrix asphalt mixtures. Constr. Build. Mater. 224, 909–919 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.126
Hugener, M.; Partl, M.N.; Morant, M.: Cold asphalt recycling with 100% reclaimed asphalt pavement and vegetable oil-based rejuvenators. Road Mater. Pavement Des. 15(2), 239–258 (2014). https://doi.org/10.1080/14680629.2013.860910
Jia, X.; Huang, B.; Moore, J.A.; Zhao, S.: Influence of waste engine oil on asphalt mixtures containing reclaimed asphalt pavement. J. Mater. Civ. Eng. 27(12), 04015042 (2015). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001292
Li, Y.; Shen, A.; Lyu, Z.; Wang, S.; Formela, K.; Zhang, G.: Ground tire rubber thermo-mechanically devulcanized in the presence of waste engine oil as asphalt modifier. Constr. Build. Mater. 222, 588–600 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.162
Mamun, A.A.; Wahhab, H.I.A.-A.: Comparative laboratory evaluation of waste cooking oil rejuvenated asphalt concrete mixtures for high contents of reclaimed asphalt pavement. Int. J. Pavement Eng. (2018). https://doi.org/10.1080/10298436.2018.1539486
Taherkhani, H.; Noorian, F.: Laboratory investigation on the properties of asphalt concrete containing reclaimed asphalt pavement and waste cooking oil as recycling agent. Int. J. Pavement Eng. (2019). https://doi.org/10.1080/10298436.2019.1626387
Xingyu, Y.; Ruikun, D.; Naipeng, T.: Development of a novel binder rejuvenator composed by waste cooking oil and crumb tire rubber. Constr. Build. Mater. 236, 117621 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117621
Zhang, J.; Sun, H.; Jiang, H.; Xu, X.; Liang, M.; Hou, Y.; et al.: Experimental assessment of reclaimed bitumen and RAP asphalt mixtures incorporating a developed rejuvenator. Constr. Build. Mater. 215, 660–669 (2019). https://doi.org/10.1016/j.conbuildmat.2019.04.202
Ziari, H.; Moniri, A.; Bahri, P.; Saghafi, Y.: The effect of rejuvenators on the aging resistance of recycled asphalt mixtures. Constr. Build. Mater. 224, 89–98 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.181
Ziari, H.; Moniri, A.; Bahri, P.; Saghafi, Y.: Evaluation of performance properties of 50% recycled asphalt mixtures using three types of rejuvenators. Pet. Sci. Technol. 37(23), 2355–2361 (2019). https://doi.org/10.1080/10916466.2018.1550505
Borhan, M.N.; Suja, E.; Ismail, A.; Rahmat, R.A.O.: Used cylinder oil modified coldmix asphalt concrete. J. Appl. Sci. 7(22), 3485–3491 (2007)
DeDene, C.D.; You, Z.-P.: The performance of aged asphalt materials rejuvenated with waste engine oil. Int. J. Pavement Res. Technol. 7(2), 145–152 (2014)
Tran, N.H., Taylor, A.,; Willis, R.: Effect of rejuvenator on performance properties of HMA mixtures with high RAP and RAS contents. NCAT Report, 12-05 (2012)
Roberts, F.L.; Kandhal, P.S.; Brown, E.R.; Lee, D.-Y.; Kennedy, T.W.: Hot Mix Asphalt Materials, Mixture Design and Construction (1991)
Taherkhania, H.; Noorianb, F.: Comparing the effects of waste engine and cooking oil on the properties of asphalt concrete containing reclaimed asphalt pavement (RAP). Road Mater. Pavement Des. (2018). https://doi.org/10.1080/14680629.2018.1546220
El-Shorbagy, A.M.; El-Badawy, S.M.; Gabr, A.R.: Investigation of waste oils as rejuvenators of aged bitumen for sustainable pavement. Constr. Build. Mater. 220, 228–237 (2019). https://doi.org/10.1016/j.conbuildmat.2019.05.180
Mamun, A.A.; Al-Abdul Wahhab, H.I.: Evaluation of waste engine oil-rejuvenated asphalt concrete mixtures with high RAP content. Adv. Mater. Sci. Eng. 2018, 7386256 (2018). https://doi.org/10.1155/2018/7386256
Boriack, P.C.; Katicha, S.W.; Flintsch, G.W.; Tomlinson, C.R.: Laboratory evaluation of asphalt concrete mixtures containing high contents of reclaimed asphalt pavement (rap) and binder (Tech. Rep.). Virginia Center for Transportation Innovation and Research (2014)
Daniel, J.; Lachance, A.: Mechanistic and volumetric properties of asphalt mixtures with recycled asphalt pavement. Transp. Res. Rec. J. Transp. Res. Board 1929, 28–36 (2005)
Zhang, Z.; Rogue, R.; Birgisson, B.; Sangpetngam, B.: Identification and verification of a suitable crack growth law. J. Assoc. Asphalt Paving Technol. 70, 206–241 (2001)
Huang, B.; Li, G.; Mohammad, L.N.: Analytical modeling and experimental study of tensile strength of asphalt concrete composite at low temperatures. Compos. B Eng. 34(8), 705–714 (2003)
Putri, A.M.; Suparma, L.B.: Laboratory study on the durability characteristics (moisture damage evaluation) of asphalt concrete wearing course (ac-wc) utilizing bantak and clereng as aggregate (using Marshall methods). J. East. Asia Soc. Transp. Stud. 8, 1555–1567 (2010)
Mashaan, N.S.; Karim, M.R.: Evaluation of permanent deformation of CRM-reinforced SMA and its correlation with dynamic stiffness and dynamic creep. Sci. World J. 2013, 981637 (2013)
Sondag, M.S.; Chadbourn, B.A.; Drescher, A.: Investigation of recycled asphalt pavement (RAP) mixtures (2002)
Puga, N.; Nieve, K.L.: Rheology and performance evaluation of polyoctenamer as asphalt rubber modifier in hot mix asphalt (2013)
Arifuzzaman, M.; Gazder, U.; Islam, M.S.; Mamun, A.A.: Prediction and sensitivity analysis of CNTs-modified asphalt’s adhesion force using a radial basis neural network model. J. Adhes. Sci. Technol. 34(10), 1–15 (2019)
Hassan, M.R.; Mamun, A.A.; Hossain, M.I.; Arifuzzaman, M.: Moisture damage modeling in lime and chemically modified asphalt at nanolevel using ensemble computational intelligence. Comput. Intell. Neurosci. 2018, 7525789 (2018)
Mamun, A.; Arifuzzaman, M.: Nano-scale moisture damage evaluation of carbon nanotube-modified asphalt. Constr. Build. Mater. 193, 268–275 (2018)
Doyle, J.D.; Howard, I.L.: Rutting and moisture damage resistance of high reclaimed asphalt pavement warm mixed asphalt: loaded wheel tracking vs. conventional methods. Road Mater. Pavement Des. 14(sup2), 148–172 (2013)
Huang, B.; Shu, X.; Vukosavljevic, D.: Laboratory investigation of cracking resistance of hot-mix asphalt field mixtures containing screened reclaimed asphalt pavement. J. Mater. Civ. Eng. 23(11), 1535–1543 (2010)
MoghadasNejad, F.; Azarhoosh, A.; Hamedi, G.H.; Roshani, H.: Rutting performance prediction of warm mix asphalt containing reclaimed asphalt pavements. Road Mater. Pavement Des. 15(1), 207–219 (2014)
Zaumanis, M.; Mallick, R.B.; Poulikakos, L.; Frank, R.: Influence of six rejuvenators on the performance properties of reclaimed asphalt pavement (rap) binder and 100% recycled asphalt mixtures. Constr. Build. Mater. 71, 538–550 (2014)