Rapid and sensitive screening system of Mycoplasma hyorhinis based on Sandwich-DNA hybridization with nano-amplifiers
Tài liệu tham khảo
Srinivas, 2018, Metal-free ribonucleotide reduction powered by a DOPA radical in Mycoplasma pathogens, Nature, 563, 416, 10.1038/s41586-018-0653-6
Pelletier, 2021, Genetic requirements for cell division in a genomically minimal cell, Cell, 184, 2430, 10.1016/j.cell.2021.03.008
Vizarraga, 2021, The sialoglycan binding adhesins of mycoplasma genitalium and mycoplasma pneumoniae, Trends Microbiol., 29, 477, 10.1016/j.tim.2021.01.011
Wang, 2019, Monocyte subsets study in children with Mycoplasma pneumoniae pneumonia, Immunol. Res., 67, 373, 10.1007/s12026-019-09096-6
Garcia-Martin, 2022, MicroRNA sequence codes for small extracellular vesicle release and cellular retention, Nature, 601, 446, 10.1038/s41586-021-04234-3
Zhang, 2021, Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets, Nat. Cell Biol., 23, 1240, 10.1038/s41556-021-00805-8
Alavi, 2022, Real-time alerting system for COVID-19 and other stress events using wearable data, Nat. Med., 28, 175, 10.1038/s41591-021-01593-2
Shio, 1950, vol. 192, 2543
Bai, 2020, Mycoplasma ovipneumoniae-derived lipid-associated membrane proteins induce cytokine secretion in mouse peritoneal macrophages through TLR2 signalling, Res. Vet. Sci., 132, 474, 10.1016/j.rvsc.2020.07.022
Wu, 2008, Toll-like receptor 2 down-regulation in established mouse allergic lungs contributes to decreased mycoplasma clearance, Am. J. Respir. Crit. Care Med., 177, 720, 10.1164/rccm.200709-1387OC
Liu, 2007, Therapeutic implications of the TLR and VDR partnership, Trends Mol. Med., 13, 117, 10.1016/j.molmed.2007.01.006
Zhao, 2023, Carbon-based stimuli-responsive nanomaterials: classification and application, Cyborg and Bionic Syst., 4, 10.34133/cbsystems.0022
Uphoff, 2014, Detection of Mycoplasma contamination in cell cultures, Curr. Protoc. Mol. Biol., 106, 28
Liu, 2019, Rapid detection of mycoplasma-infected cells by an ssDNA aptamer probe, ACS Sens., 4, 2028, 10.1021/acssensors.9b00582
Kutty, 2019, Mycoplasma pneumoniae among children hospitalized with community-acquired pneumonia, Clin. Infect. Dis., 68, 5
Morris, 2021, Adventitious agent detection methods in bio-pharmaceutical applications with a focus on viruses, bacteria, and mycoplasma, Curr. Opin. Biotechnol., 71, 105, 10.1016/j.copbio.2021.06.027
Meyer Sauteur, 2020, Circulating antibody-secreting cell response during mycoplasma pneumoniae childhood pneumonia, J. Infect. Dis., 222, 136, 10.1093/infdis/jiaa062
Diaz, 2010, Rapid detection of coinfections by Trichomonas vaginalis, Mycoplasma hominis, and Ureaplasma urealyticum by a new multiplex polymerase chain reaction, Diagn. Microbiol. Infect. Dis., 67, 30, 10.1016/j.diagmicrobio.2009.12.022
Raherison, 2009, Real-time high resolution melting PCR for identification of the Swedish variant of Chlamydia trachomatis, J. Microbiol. Methods, 78, 101, 10.1016/j.mimet.2009.04.011
Meyer Sauteur, 2020, Circulating antibody-secreting cell response during Mycoplasma pneumoniae childhood pneumonia, J. Infect. Dis., 222, 136, 10.1093/infdis/jiaa062
Jiang, 2022, Recombinase polymerase amplification combined with real-time fluorescent probe for mycoplasma pneumoniae detection, J. Clin. Med., 11, 10.3390/jcm11071780
Scherrer, 2023, Development of a new multiplex quantitative PCR for the detection of Glaesserella parasuis, Mycoplasma hyorhinis, and Mycoplasma hyosynoviae, Microbiologyopen, 12, e1353, 10.1002/mbo3.1353
Yang, 2020, A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat, Nat. Biotechnol., 38, 217, 10.1038/s41587-019-0321-x
Wang, 2022, A wearable electrochemical biosensor for the monitoring of metabolites and nutrients, Nat. Biomed. Eng., 6, 1225, 10.1038/s41551-022-00916-z
Zhao, 2022, MOF derived core-shell CuO/C with temperature-controlled oxygen-vacancy for real time analysis of glucose, J. Nanobiotechnol., 20, 507, 10.1186/s12951-022-01715-z
Jiang, 2023, Recent advances in droplet microfluidics for single-cell analysis, Trends Analyt. Chem., 159, 10.1016/j.trac.2023.116932
Sadat Mousavi, 2020, A multiplexed, electrochemical interface for gene-circuit-based sensors, Nat. Chem., 12, 48, 10.1038/s41557-019-0366-y
Cao, 2021, In situ programmable DNA circuit-promoted electrochemical characterization of stemlike phenotype in breast cancer, J. Am. Chem. Soc., 143, 16078, 10.1021/jacs.1c06436
Gao, 2021, More symmetrical “hot spots” ensure stronger plasmon-enhanced fluorescence: from Au nanorods to nanostars, Anal. Chem., 93, 2480, 10.1021/acs.analchem.0c04518
Szczerbiński, 2018, Plasmon-driven photocatalysis leads to products known from E-beam and X-ray-induced surface chemistry, Nano Lett., 18, 6740, 10.1021/acs.nanolett.8b02426
Wang, 2021, Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid, Nat. Biomed. Eng., 5, 64, 10.1038/s41551-020-00672-y
Su, 2013, Highly sensitive electrochemical lead ion sensor harnessing peptide probe molecules on porous gold electrodes, Biosens. Bioelectron., 48, 263, 10.1016/j.bios.2013.04.031
Yang, 2014, Highly sensitive and selective determination of bisphenol-A using peptide-modified gold electrode, Biosens. Bioelectron., 61, 38, 10.1016/j.bios.2014.04.009
Zhang, 2023
Li, 2018, MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting, Adv. Energy Mater., 8
Asif, 2010, Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose, Biosens. Bioelectron., 25, 2205, 10.1016/j.bios.2010.02.025
Döbbelin, 2010, Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) nanotube arrays using ZnO templates, J. Polym. Sci. Polym. Chem., 48, 4648, 10.1002/pola.24251
Liu, 2022, Near-infrared-absorbing B–N lewis pair-functionalized anthracenes: electronic structure tuning, conformational isomerism, and applications in photothermal cancer therapy, J. Am. Chem. Soc., 144, 18908, 10.1021/jacs.2c06538
Herrero, 2001, Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials, Chem. Rev., 101, 1897, 10.1021/cr9600363
Zhu, 2022, Cathodic Zn underpotential deposition: an evitable degradation mechanism in aqueous zinc-ion batteries, Sci. Bull., 67, 1882, 10.1016/j.scib.2022.08.023
He, 2010, Design of AgM bimetallic alloy nanostructures (M = Au, Pd, Pt) with tunable morphology and peroxidase-like activity, Chem. Mater., 22, 2988, 10.1021/cm100393v
Chen, 2011, Architecture of metallic nanostructures: synthesis strategy and specific applications, J. Phys. Chem. C, 115, 3513, 10.1021/jp108403r
Nezakati, 2018, Conductive polymers: opportunities and challenges in biomedical applications, Chem. Rev., 118, 6766, 10.1021/acs.chemrev.6b00275
Liu, 2022, Triarylboron-doped acenethiophenes as organic sonosensitizers for highly efficient sonodynamic therapy with low phototoxicity, Adv. Mater., 34
Cheng, 2012, Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent, J. Mater. Chem., 22, 2244, 10.1039/C1JM13937A
Xi, 2019, Elucidation of HEPES affinity to and structure on gold nanostars, J. Am. Chem. Soc., 141, 4034, 10.1021/jacs.8b13211
Tanwar, 2017, DNA origami directed Au nanostar dimers for single-molecule surface-enhanced Raman scattering, J. Am. Chem. Soc., 139, 17639, 10.1021/jacs.7b10410
Sugita, 2021, Detection of mycoplasma contamination in transplanted retinal cells by rapid and sensitive polymerase chain reaction test, Int. J. Mol. Sci., 22, 10.3390/ijms222212555
Totten, 2019, Evaluation of the ELITe InGenius PCR platform for detection of mycoplasma pneumoniae, J. Clin. Microbiol., 57, 10.1128/JCM.00287-19
Xia, 2022, Rapid and visual detection of Mycoplasma synoviae by recombinase-aided amplification assay combined with a lateral flow dipstick, Poult. Sci., 101, 10.1016/j.psj.2022.101860
Chen, 2022, EasyNAT MP assay: a simple, rapid, and low-cost method to detect mycoplasma pneumoniae using cross-priming amplification technology, Mol. Diagn. Ther., 26, 345, 10.1007/s40291-022-00582-6
Xiao, 2022, Loop-mediated isothermal amplification coupled with nanoparticle-based biosensor: a rapid and sensitive method to detect mycoplasma pneumoniae, Front. Cell. Infect. Microbiol., 12, 10.3389/fcimb.2022.882855
Urso, 2020, Ultrasensitive electrochemical impedance detection of mycoplasma agalactiae DNA by low-cost and disposable Au-decorated NiO nanowall electrodes, ACS Appl. Mater. Interfaces, 12, 50143, 10.1021/acsami.0c14679
Deng, 2022, Ultrasensitive, specific, and rapid detection of mycoplasma pneumoniae using the ERA/CRISPR-Cas12a dual system, Front. Microbiol., 13, 10.3389/fmicb.2022.811768