Trends of bioderived carbonaceous materials for futuristic biomedical applications
Tài liệu tham khảo
Sarkar, 2021, Structural equation modeling for indicators of sustainable agriculture: prospective of a developing country’s agriculture, Land Use Policy., 109, 105638, 10.1016/j.landusepol.2021.105638
Chimene, 2015, Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects, Adv. Mater., 27, 7261, 10.1002/adma.201502422
Stark, 2015, Industrial applications of nanoparticles, Chem. Soc. Rev., 44, 5793, 10.1039/C4CS00362D
Jain, 2020, Sonochemical decoration of graphene oxide with magnetic Fe3O4@CuO nanocomposite for efficient click synthesis of coumarin-sugar based bioconjugates and their cytotoxic activity, Catal. Letters., 150, 1142, 10.1007/s10562-019-02982-6
Attri, 2021, Nanoparticles incorporating a fluorescence turn-on reporter for real-time drug release monitoring, a chemoenhancer and a stealth agent: poseidon’s trident against cancer?, Mol. Pharm., 18, 124, 10.1021/acs.molpharmaceut.0c00730
Patra, 2018, Nano based drug delivery systems: recent developments and future prospects, J. Nanobiotechnol., 16, 10.1186/s12951-018-0392-8
Bozzuto, 2015, Liposomes as nanomedical devices, Int. J. Nanomed., 975, 10.2147/IJN.S68861
Hochella, 2019, Natural, incidental, and engineered nanomaterials and their impacts on the Earth system, Science (80-), 363
Yang, 2019, Biomass-derived carbonaceous materials: recent progress in synthetic approaches, advantages, and applications, ACS Sustain. Chem. Eng., 7, 4564, 10.1021/acssuschemeng.8b06030
Hosnedlova, 2019, Carbon nanomaterials for targeted cancer therapy drugs: a critical review, Chem. Rec., 19, 502, 10.1002/tcr.201800038
Varma, 2019, Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications, ACS Sustain. Chem. Eng., 7, 6458, 10.1021/acssuschemeng.8b06550
Mansi, 2020, DL-Valine assisted fabrication of quercetin loaded CuO nanoleaves through microwave irradiation method: augmentation in its catalytic and antimicrobial efficiencies, Environ. Nanotechnol., Monit. Manag., 14, 100306
N. Devi, R. Kumar, R.K. Singh, Microwave-Assisted Modification of Graphene and Its Derivatives: Synthesis, Reduction and Exfoliation, in: 2019: pp. 279–311. https://doi.org/10.1007/978-981-32-9057-0_12.
K.R. Singh, V. Nayak, R.P. Singh, Introduction to bionanomaterials: an overview, in: Bionanomaterials, IOP Publishing, 2021. https://doi.org/10.1088/978-0-7503-3767-0ch1.
C.O. Adetunji, O.T. Olaniyan, O.A. Anani, A. Inobeme, K.E. Ukhurebor, R.E. Bodunrinde, J.B. Adetunji, K.R. Singh, V. Nayak, W.D. Palnam, R.P. Singh, Bionanomaterials for green bionanotechnology, in: Bionanomaterials, IOP Publishing, 2021. https://doi.org/10.1088/978-0-7503-3767-0ch10.
Nayak, 2021, Nanomaterials’ properties, classification, synthesis, and characterization, 37
Mallick, 2022, Potentialities of core@shell nanomaterials for biosensor technologies, Mater. Lett., 306, 130912, 10.1016/j.matlet.2021.130912
Singh, 2021, Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences, RSC Adv., 11, 24722, 10.1039/D1RA04273D
Jemison, 2021, Biomaterials for human space exploration: A review of their untapped potential, Acta Biomater., 128, 77, 10.1016/j.actbio.2021.04.033
Dahiya, 2020, Biobased products and life cycle assessment in the context of circular economy and sustainability, Mater. Circ. Econ., 2, 7, 10.1007/s42824-020-00007-x
S. Ghahari, S. Ghahari, S. Ghahari, G.A. Nematzadeh, H. Sarma, Environmental Biotechnology: Toward a Sustainable Future, in: Biotechnol. Sustain. Environ., Springer Singapore, Singapore, 2021: pp. 1–31. https://doi.org/10.1007/978-981-16-1955-7_1.
Li, 2020, Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors, Chem. Eng. J., 397, 125418, 10.1016/j.cej.2020.125418
Liu, 2019, Emerging applications of biochar-based materials for energy storage and conversion, Energy Environ. Sci., 12, 1751, 10.1039/C9EE00206E
Qiang, 2022, Recent progress in biomass-derived carbonaceous composites for enhanced microwave absorption, J. Colloid Interface Sci., 606, 406, 10.1016/j.jcis.2021.07.144
Wang, 2019, Preparation, modification and environmental application of biochar: a review, J. Clean. Prod., 227, 1002, 10.1016/j.jclepro.2019.04.282
Maschmeyer, 2020, Upgrading of marine (fish and crustaceans) biowaste for high added-value molecules and bio(nano)-materials, Chem. Soc. Rev., 49, 4527, 10.1039/C9CS00653B
Powell, 2021, Bio-derived nanomaterials for energy storage and conversion, Nano Sel., 2, 1682, 10.1002/nano.202100001
Mukhtar, 2020, Nanomaterials for diagnosis and treatment of brain cancer: recent updates, Chemosensors., 8, 117, 10.3390/chemosensors8040117
Mattei, 2015, “Extremely minimally invasive”: recent advances in nanotechnology research and future applications in neurosurgery, Neurosurg. Rev., 38, 27, 10.1007/s10143-014-0566-2
Nagraik, 2021, Milk adulterant detection: conventional and biosensor based approaches: a review, Sens. Bio-Sensing Res., 33, 100433, 10.1016/j.sbsr.2021.100433
Nagraik, 2021, Ultrasensitive nanohybrid electrochemical sensor to detect LipL32 gene of Leptospira interrogans, Chem. Pap., 75, 5453, 10.1007/s11696-021-01737-1
Nagraik, 2021, Amalgamation of biosensors and nanotechnology in disease diagnosis: mini-review, Sensors Int., 2, 100089, 10.1016/j.sintl.2021.100089
Feng, 2009, Structure and properties of new thermoforming bionanocomposites based on chitin whisker- graft -polycaprolactone, J. Appl. Polym. Sci., 112, 2830, 10.1002/app.29731
Santos, 2016, The use of cellulose nanofillers in obtaining polymer nanocomposites: properties, processing, and applications, Mater. Sci. Appl., 07, 257
Ali, 2018, A review on chitosan and its nanocomposites in drug delivery, Int. J. Biol. Macromol., 109, 273, 10.1016/j.ijbiomac.2017.12.078
Pastoriza-Santos, 2018, Plasmonic polymer nanocomposites, Nat. Rev. Mater., 3, 375, 10.1038/s41578-018-0050-7
Moradi, 2019, Preparation and characterization of chitosan based hydrogels containing cyclodextrin inclusion compounds or nanoemulsions of thyme oil, Polym. Int., 68, 1891, 10.1002/pi.5899
Li, 2017, Nitrogen doped and hierarchically porous carbons derived from chitosan hydrogel via rapid microwave carbonization for high-performance supercapacitors, Carbon N. Y., 122, 592, 10.1016/j.carbon.2017.07.009
Yang, 2021, A review on α-mangostin as a potential multi-target-directed ligand for Alzheimer’s disease, Eur. J. Pharmacol., 897, 173950, 10.1016/j.ejphar.2021.173950
Hagl, 2015, Curcumin micelles improve mitochondrial function in neuronal PC12 cells and brains of NMRI mice – Impact on bioavailability, Neurochem. Int., 89, 234, 10.1016/j.neuint.2015.07.026
Alqahtani, 2017, Food protein based core-shell nanocarriers for oral drug delivery: effect of shell composition on in vitro and in vivo functional performance of zein nanocarriers, Mol. Pharm., 14, 757, 10.1021/acs.molpharmaceut.6b01017
Iacob, 2021, Recent biomedical approaches for chitosan based materials as drug delivery nanocarriers, Pharmaceutics., 13, 587, 10.3390/pharmaceutics13040587
Christianah, 2016, Rifampicin-loaded silver-starch nanocomposite for the treatment of multi-resistant tuberculosis, J. Nanomed. Nanotechnol., 7, 10.4172/2157-7439.1000374
Chen, 2016, Advanced biomaterials and their potential applications in the treatment of periodontal disease, Crit. Rev. Biotechnol., 36, 760, 10.3109/07388551.2015.1035693
Mangraviti, 2015, Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo, ACS Nano., 9, 1236, 10.1021/nn504905q
R. Jayakumar, K. Chennazhi, S. Nair, T. Furuike, H. Tamura, Chitosan-Conjugated DNA Nanoparticle Delivery Systems for Gene Therapy, in: Chitin, Chitosan, Oligosaccharides Their Deriv., CRC Press, 2010: pp. 357–369. https://doi.org/10.1201/EBK1439816035-c26.