Property characterization and formation mechanism of anticorrosion film coated on AZ31B Mg alloy by SNAP technology
Tóm tắt
Self-assembled nanophase particle (SNAP) technology was use to protect AZ31B Mg alloy. The SNAP sol was synthesized in an aqueous solution by the organosilanes of 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetraethoxysilane (TEOS), the crosslink agent of triethylene tetramine (TETA). Structure, thermal stability and corrosion protection of SNAP system (including SNAP sol and SNAP film on the Mg substrate) were studied by various complementary techniques. The results demonstrated that the nanoparticles in the SNAP sol suspended stably for 3–4 months during the process of the hydrolysis reaction; for the crosslink reaction, a large silica network structure was formed by the addition of TETA. Moreover, the properties of thermal stability, compactness and corrosion protection of the SNAP system increased obviously by crosslink reaction. Bonding mechanism of the SNAP film/Mg system showed that the improved properties were due to high degree of cross linking of Si–O–Si network structure, high density of Mg–O–Si bonds and high content of inorganic component.
Tài liệu tham khảo
Zheludkevich ML, Salvado IM (2005) J Mater Chem 15:5099. doi:10-1039/b419153f
Guglielmi M (1997) J Sol-Gel Sci Technol 8:442. doi:10.1007/BF02436880
Durán A, Castro Y, Aparicio M, Conde A, Damborenea JJ (2007) Int Mater Rev 52:175. doi:10.1179/174328007x160263
Saji VS, Thomas J (2007) Curr Sci 92:51
Mackenzie JD (1982) J Non-Cryst Solids 48:1. doi:10.1016/0022-3093(82)90241-1
Fabes BD, Berry GD (1990) J Non-Cryst Solids 121:357. doi:10.1016/0022-3093(90)90158-I
Mahltig B, Fiedler D, Böttcher H (2004) J Sol-Gel Sci Technol 32:219. doi:10.1007/s10971-004-5791-7
Ertekin K, Cinar S, Aydemir T (2005) Dyes Pigm 67:133. doi:10.1016/j.dyepig.2004.11.001
Lamaka SV, Zheludkevich ML, Yasakau KA, Montemor MF, Cecílio P, Ferreira MGS (2006) Electrochem Commun 8:421. doi:10.1016/j.elecom.2005.12.019
Morikawa A, lyoku Y, Kakimoto M (1992) J Mater Chem 2:679. doi:10.1039/JM9920200679
Judeinstein P, Sanchez C (1996) J Mater Chem 6:511. doi:10.1039/JM9960600511
Corriu R (1998) Polyhedron 17:925. doi:10.1016/S0277-5387(97)00261-1
Braun PV, Osenar P, Tohver V, Kennedy SB, Stupp SI (1999) J Am Chem Soc 121:7302. doi:10.1021/ja9833725
Atanacio AJ, Latella BA, Barbé CJ, Swain MV (2005) Surf Coat Technol 192:354. doi:10.1016/j.surfcoat.2004.06.004
Vreugdenhil AJ, Balbyshev VN, Donley MS (2001) J Coat Technol 195:35. doi:10.1007/BF02730029
Khramov AN, Balbyshev VN, Voevodin NN, Donley MS (2003) Prog Org Coat 47:207. doi:10.1016/S0300-9440(03)00140-1
Donley MS, Mantz RA, Khramov AN, Balbyshev VN, Kasten LS, Gaspar DJ (2003) Prog Org Coat 47:401. doi:10.1016/j.porgcoat.2003.08.017
Kasten LS, Balbyshev VN, Donley MS (2003) Prog Org Coat 47:214. doi:10.1016/j.porgcoat.2003.08.010
Donley MS, Balbyshev VN, Voevodin NN (2005) Prog Org Coat 52:34. doi:10.1016/j.porgcoat.2004.05.007
Balbyshev VN, Anderson KL, Sinsawat A, Farmer BL, Donley MS (2003) Prog Org Coat 47:337. doi:10.1016/S0300-9440(03)00126-7
Voevodin NN, Balbyshev VN, Khobaib M, Donley MS (2003) Prog Org Coat 47:416. doi:10.1016/S0300-9440(03)00131-0
Khramov AN, Voevodin NN, Balbyshev VN, Donley MS (2004) Thin Solid Films 447:549. doi:10.1016/j.tsf.2003.07.016
Woods ME, Vreugdenhil AJ (2006) J Mater Sci 41:7545. doi:10.1007/s10853-006-0839-4
Gray JE, Luan B (2002) J Alloys Compd 336:88. doi:10.1016/S0925-8388(01)01899-0
Wu KH, Li MC, Chang TC, Yang CC (2006) J Polym Sci A Polym Chem 44:335. doi:10.1002/pola.21094
Wu KH, Chao CM, Yeh TF, Chang TC (2007) Surf Coat Technol 201:5782. doi:10.1016/j.surfcoat.2006.10.024
Wu KH, Li MC, Yang CC, Wang GP (2006) J Non-Cryst Solids 352:2897. doi:10.1016/j.jnoncrysol.2006.01.100
Sun JT, Huang YD, Gong GF, Cao HL (2006) Polym Degrad Stab 91:339. doi:10.1016/j.polymdegradstab.2005.04.037
Kissinger HE (1957) Anal Chem 29:1702. doi:10.1021/ac60131a045
Krevelen DW, Herden C, Huntjens FJ (1951) Fuel 30:253
Zheludkevich ML, Serra R, Montemor MF, Yasakau KA, Salvado IMM, Ferreira MGS (2005) Electrochim Acta 51:208. doi:10.1016/j.electacta.2005.04.021
Trabelsi W, Dhouibi L, Triki E, Ferreira MGS, Montemor MF (2005) Surf Coat Technol 192:284. doi:10.1016/j.surfcoat.2004.04.088
Ferreira MGS, Duarte RG, Montemor MF, Simões AMP (2004) Electrochim Acta 49:2927. doi:10.1016/j.electacta.2004.01.051
Parkhill RL. Investigation of water-based silica and organically modified silicate sol-gel systems, Ph.D. Thesis, Oklahoma State University, Stillwater, OK, August 1999
Wagh PB, Ingale SV (2002) Ceram Int 28:43. doi:10.1016/S0272-8842(01)00056-6
Rao AV, Haranath D (1999) Microporous Mesoporous Mater 30:267. doi:10.1016/S1387-1811(99)00037-2
Uricanu V, Donescu D, Banu AG, Serban S, Olteanu M, Dudau M (2004) Mater Chem Phys 85:120. doi:10.1016/j.matchemphys.2003.12.024
Zhang LJ, Fan JJ, Zhang Z, Cao FH, Zhang JQ, Cao CN (2007) Electrochim Acta 52:5325. doi:10.1016/j.electacta.2006.12.083
Wu CS, Zhang Z, Cao FH, Zhang LJ, Zhang JQ, Cao CN (2007) Appl Surf Sci 253:3893. doi:10.1016/j.apsusc.2006.08.020
Guo HF, An MZ (2005) Appl Surf Sci 246:229. doi:10.1016/j.apsusc.2004.11.031
Liu LJ (2005) Study on the preparation and anticorrosion of the Epoxy/SiO2 hybrid materials. WUHAN University of Technology (WHUT), China, p 19
Karmakar B, De G, Ganguli D (2000) J Non-Cryst Solids 272:119. doi:10.1016/S0022-3093(00)00231-3
De G, Karmakar B, Ganguli D (2000) J Mater Chem 10:2289. doi:10.1039/b003221m
De G, Kundu D, Karmakar B, Ganguli D (1993) J Non-Cryst Solids 155:253. doi:10.1016/0022-3093(93)91259-6
Zhang X, Wu YY, He SY (2007) Surf Coat Technol 201:6051. doi:10.1016/j.surfcoat.2006.11.012