Uncoupling the Roles of HLA-DRB1 and HLA-DRB5 Genes in Multiple Sclerosis
Tóm tắt
Genetic susceptibility to multiple sclerosis (MS) is associated with the MHC located on chromosome 6p21. This signal maps primarily to a 1-Mb region encompassing the HLA class II loci, and it segregates often with the HLA-DQB1*0602, -DQA1*0102, -DRB1*1501, -DRB5*0101 haplotype. However, the identification of the true predisposing gene or genes within the susceptibility haplotype has been handicapped by the strong linkage disequilibrium across the locus. African Americans have greater MHC haplotypic diversity and distinct patterns of linkage disequilibrium, which make this population particularly informative for fine mapping efforts. The purpose of this study was to establish the telomeric boundary of the HLA class II region affecting susceptibility to MS by assessing genetic association with the neighboring HLA-DRB5 gene as well as seven telomeric single nucleotide polymorphisms in a large, well-characterized African American dataset. Rare DRB5*null individuals were previously described in African populations. Although significant associations with both HLA-DRB1 and HLA-DRB5 loci were present, HLA-DRB1*1503 was associated with MS in the absence of HLA-DRB5, providing evidence for HLA-DRB1 as the primary susceptibility gene. Interestingly, the HLA-DRB5*null subjects appear to be at increased risk for developing secondary progressive MS. Thus, HLA-DRB5 attenuates MS severity, a finding consistent with HLA-DRB5’s proposed role as a modifier in experimental autoimmune encephalomyelitis. Additionally, conditional haplotype analysis revealed a susceptibility signal at the class III AGER locus independent of DRB1. The data underscore the power of the African American MS dataset to identify disease genes by association in a region of high linkage disequilibrium.
Từ khóa
Tài liệu tham khảo
Fernald, G. H., R. F. Yeh, S. L. Hauser, J. R. Oksenberg, S. E. Baranzini. 2005. Mapping gene activity in complex disorders: integration of expression and genomic scans for multiple sclerosis. J. Neuroimmunol. 167: 157-169.
Abdeen, H., S. Heggarty, S. A. Hawkins, M. Hutchinson, G. V. McDonnell, C. A. Graham. 2006. Mapping candidate non-MHC susceptibility regions to multiple sclerosis. Genes Immun. 7: 494-502.
Hermanowski, J., E. Bouzigon, P. Forabosco, M. Y. Ng, S. A. Fisher, C. M. Lewis. 2007. Meta-analysis of genome-wide linkage studies for multiple sclerosis, using an extended GSMA method. Eur. J. Hum. Genet. 15: 703-710.
International Multiple Sclerosis Genetics Consortium Hafler, D. A., A. Compston, S. Sawcer, E. S. Lander, M. J. Daly, P. L. De Jager, P. I. de Bakker, S. B. Gabriel, D. B. Mirel, et al 2007. Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med. 357: 851-862.
Barcellos, L. F., J. R. Oksenberg, A. B. Begovich, E. R. Martin, S. Schmidt, E. Vittinghoff, D. S. Goodin, D. Pelletier, R. R. Lincoln, P. Bucher, et al 2003. HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am. J. Hum. Genet. 72: 710-716.
Lincoln, M. R., A. Montpetit, M. Z. Cader, J. Saarela, D. A. Dyment, M. Tiislar, V. Ferretti, P. J. Tienari, A. D. Sadovnick, L. Peltonen, et al 2005. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat. Genet. 37: 1108-1112.
Fukazawa, T., S. Kikuchi, H. Sasaki, I. Yabe, R. Miyagishi, T. Hamada, K. Tashiro. 2000. Genomic HLA profiles of MS in Hokkaido, Japan: important role of DPB1*0501 allele. J. Neurol. 247: 175-178.
Fernandez, O., V. Fernandez, A. Alonso, A. Caballero, G. Luque, M. Bravo, A. Leon, C. Mayorga, L. Leyva, E. de Ramon. 2004. DQB1*0602 allele shows a strong association with multiple sclerosis in patients in Malaga, Spain. J. Neurol. 251: 440-444.
Khare, M., A. Mangalam, M. Rodriguez, C. S. David. 2005. HLA DR and DQ interaction in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in HLA class II transgenic mice. J. Neuroimmunol. 169: 1-12.
Prat, E., U. Tomaru, L. Sabater, D. M. Park, R. Granger, N. Kruse, J. M. Ohayon, M. P. Bettinotti, R. Martin. 2005. HLA-DRB5*0101 and -DRB1*1501 expression in the multiple sclerosis-associated HLA-DR15 haplotype. J. Neuroimmunol. 167: 108-119.
Sospedra, M., P. A. Muraro, I. Stefanova, Y. Zhao, K. Chung, Y. Li, M. Giulianotti, R. Simon, R. Mariuzza, C. Pinilla, R. Martin. 2006. Redundancy in antigen-presenting function of the HLA-DR and -DQ molecules in the multiple sclerosis-associated HLA-DR2 haplotype. J. Immunol. 176: 1951-1961.
Chao, M. J., M. C. Barnardo, G. Z. Lui, M. R. Lincoln, S. V. Ramagopalan, B. M. Herrera, D. A. Dyment, A. D. Sadovnick, G. C. Ebers. 2007. Transmission of class I/II multi-locus MHC haplotypes and multiple sclerosis susceptibility: accounting for linkage disequilibrium. Hum. Mol. Genet. 16: 1951-1958.
Miretti, M. M., E. C. Walsh, X. Ke, M. Delgado, M. Griffiths, S. Hunt, J. Morrison, P. Whittaker, E. S. Lander, L. R. Cardon, et al 2005. A high-resolution linkage-disequilibrium map of the human major histocompatibility complex and first generation of tag single-nucleotide polymorphisms. Am. J. Hum. Genet. 76: 634-646.
Wallin, M. T., W. F. Page, J. F. Kurtzke. 2004. Multiple sclerosis in US veterans of the Vietnam era and later military service: race, sex, and geography. Ann. Neurol. 55: 65-71.
Oksenberg, J. R., L. F. Barcellos, B. A. Cree, S. E. Baranzini, T. L. Bugawan, O. Khan, R. R. Lincoln, A. Swerdlin, E. Mignot, L. Lin, et al 2004. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am. J. Hum. Genet. 74: 160-167.
Neeper, M., A. M. Schmidt, J. Brett, S. D. Yan, F. Wang, Y. C. Pan, K. Elliston, D. Stern, A. Shaw. 1992. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem. 267: 14998-15004.
McDonald, W. I., A. Compston, G. Edan, D. Goodkin, H. P. Hartung, F. D. Lublin, H. F. McFarland, D. W. Paty, C. H. Polman, S. C. Reingold, et al 2001. Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann. Neurol. 50: 121-127.
Cree, B. A., O. Khan, D. Bourdette, D. S. Goodin, J. A. Cohen, R. A. Marrie, D. Glidden, B. Weinstock-Guttman, D. Reich, N. Patterson, et al 2004. Clinical characteristics of African Americans vs Caucasian Americans with multiple sclerosis. Neurology 63: 2039-2045.
Patterson, N., N. Hattangadi, B. Lane, K. E. Lohmueller, D. A. Hafler, J. R. Oksenberg, S. L. Hauser, M. W. Smith, S. J. O'Brien, D. Altshuler, et al 2004. Methods for high-density admixture mapping of disease genes. Am. J. Hum. Genet. 74: 979-1000.
de Bakker, P. I., G. McVean, P. C. Sabeti, M. M. Miretti, T. Green, J. Marchini, X. Ke, A. J. Monsuur, P. Whittaker, M. Delgado, et al 2006. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat. Genet. 38: 1166-1172.
Baranzini, S. E., C. C. Bernard, J. R. Oksenberg. 2005. Modular transcriptional activity characterizes the initiation and progression of autoimmune encephalomyelitis. J. Immunol. 174: 7412-7422.
Otaegui, D., S. Mostafavi, C. C. Bernard, A. L. de Munain, P. Mousavi, J. R. Oksenberg, S. E. Baranzini. 2007. Increased transcriptional activity of milk-related genes following the active phase of experimental autoimmune encephalomyelitis and multiple sclerosis. J. Immunol. 179: 4074-4082.
Lancaster, A. K., R. M. Single, O. D. Solberg, M. P. Nelson, G. Thomson. 2007. PyPop update: a software pipeline for large-scale multilocus population genomics. Tissue Antigens 69: (Suppl. 1):192-197.
Barrett, J. C., B. Fry, J. Maller, M. J. Daly. 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263-265.
Thomson, G.. 1995. Mapping disease genes: family-based association studies. Am. J. Hum. Genet. 57: 487-498.
Purcell, S., M. J. Daly, P. C. Sham. 2007. WHAP: haplotype-based association analysis. Bioinformatics 23: 255-256.
Valdes, A. M., S. McWeeney, G. Thomson. 1997. HLA class II DR-DQ amino acids and insulin-dependent diabetes mellitus: application of the haplotype method. Am. J. Hum. Genet. 60: 717-728.
Valdes, A. M., G. Thomson. 1997. Detecting disease-predisposing variants: the haplotype method. Am. J. Hum. Genet. 60: 703-716.
Dudbridge, F.. 2003. Pedigree disequilibrium tests for multilocus haplotypes. Genet. Epidemiol. 25: 115-121.
Dudbridge, F.. 2006. UNPHASED user guide: technical report 2006/5 MRC Biostatistics Unit, Cambridge, UK.
Sone, T., K. Tsukamoto, K. Hirayama, Y. Nishimura, T. Takenouchi, M. Aizawa, T. Sasazuki. 1985. Two distinct class II molecules encoded by the genes within HLA-DR subregion of HLA-Dw2 and Dw12 can act as stimulating and restriction molecules. J. Immunol. 135: 1288-1298.
Robbins, F., C. K. Hurley, T. Tang, H. Yao, Y. S. Lin, J. Wade, N. Goeken, R. J. Hartzman. 1997. Diversity associated with the second expressed HLA-DRB locus in the human population. Immunogenetics 46: 104-110.
Gregersen, J. W., K. R. Kranc, X. Ke, P. Svendsen, L. S. Madsen, A. R. Thomsen, L. R. Cardon, J. I. Bell, L. Fugger. 2006. Functional epistasis on a common MHC haplotype associated with multiple sclerosis. Nature 443: 574-577.
Meyer, D., R. M. Single, S. J. Mack, H. A. Erlich, G. Thomson. 2006. Signatures of demographic history and natural selection in the human major histocompatibility complex loci. Genetics 173: 2121-2142.
Khare, M., A. Mangalam, M. Rodriguez, C. S. David. 2005. HLA DR and DQ interaction in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in HLA class II transgenic mice. J. Neuroimmumol. 169: 1-12.
Marrosu, M. G., M. R. Murru, G. Costa, R. Murru, F. Muntoni, F. Cucca. 1998. DRB1-DQA1-DQB1 loci and MS predisposition in the Sardinian population. Hum. Mol. Genet. 7: 1235-1237.
Mangalam, A. K., M. Khare, C. Krco, M. Rodriguez, C. S. David. 2004. Identification of T cell epitopes in human proteoplipid protein and induction of experimental autoimmune encephalomyelitis in HLA class II-transgenic mice. Eur. J. Immunol. 34: 280-290.
Lang, H. L., H. Jacobsen, S. Ikemizu, C. Andersson, K. Harlos, L. Madsen, P. Hjorth, L. Sondergaard, A. Svejgaard, K. Wucherpfennig, et al 2002. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol. 3: 940-943.
Quelvennec, E., O. Bera, P. Cabre, M. Alizadeh, D. Smadja, F. Jugde, G. Edan, G. Semana. 2003. Genetic and functional studies in multiple sclerosis patients from Martinique attest for a specific and direct role of the HLA-DR locus in the syndrome. Tissue Antigens 61: 166-171.
Bierhaus, A., P. M. Humpert, M. Morcos, T. Wendt, T. Chavakis, B. Arnold, D. M. Stern, P. P. Nawroth. 2005. Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. 83: 876-886.
Basta, G., G. Lazzerini, M. Massaro, T. Simoncini, P. Tanganelli, C. Fu, T. Kislinger, D. M. Stern, A. M. Schmidt, R. De Caterina. 2002. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105: 816-822.
Rong, L. L., C. Gooch, M. Szabolcs, K. C. Herold, E. Lalla, A. P. Hays, S. F. Yan, S. S. Yan, A. M. Schmidt. 2005. RAGE: a journey from the complications of diabetes to disorders of the nervous system: striking a fine balance between injury and repair. Restor. Neurol. Neurosci. 23: 355-365.
Bucciarelli, L. G., T. Wendt, L. Rong, E. Lalla, M. A. Hofmann, M. T. Goova, A. Taguchi, S. F. Yan, S. D. Yan, D. M. Stern, A. M. Schmidt. 2002. RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cell Mol. Life Sci. 59: 1117-1128.
Lander, H. M., J. M. Tauras, J. S. Ogiste, O. Hori, R. A. Moss, A. M. Schmidt. 1997. Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J. Biol. Chem. 272: 17810-17814.
Hofmann, M. A., S. Drury, C. Fu, W. Qu, A. Taguchi, Y. Lu, C. Avila, N. Kambham, A. Bierhaus, P. Nawroth, et al 1999. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97: 889-901.
Foell, D., H. Wittkowski, T. Vogl, J. Roth. 2007. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J. Leukocyte Biol. 81: 28-37.
Yan, S. D., X. Chen, J. Fu, M. Chen, H. Zhu, A. Roher, T. Slattery, L. Zhao, M. Nagashima, J. Morser, et al 1996. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 382: 685-691.
Hori, O., J. Brett, T. Slattery, R. Cao, J. Zhang, J. X. Chen, M. Nagashima, E. R. Lundh, S. Vijay, D. Nitecki. 1995. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin: mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J. Biol. Chem. 270: 25752-25761.
Chapman, M. R., L. S. Robinson, J. S. Pinkner, R. Roth, J. Heuser, M. Hammar, S. Normark, S. J. Hultgren. 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295: 851-855.
Sasaki, N., M. Takeuchi, H. Chowei, S. Kikuchi, Y. Hayashi, N. Nakano, H. Ikeda, S. Yamagishi, T. Kitamoto, T. Saito, Z. Makita. 2002. Advanced glycation end products (AGE) and their receptor (RAGE) in the brain of patients with Creutzfeldt-Jakob disease with prion plaques. Neurosci. Lett. 326: 117-120.
Yan, S. S., Z. Y. Wu, H. P. Zhang, G. Furtado, X. Chen, S. F. Yan, A. M. Schmidt, C. Brown, A. Stern, J. LaFaille, et al 2003. Suppression of experimental autoimmune encephalomyelitis by selective blockade of encephalitogenic T-cell infiltration of the central nervous system. Nat. Med. 9: 287-293.
Sternberg, Z., B. Weinstock-Guttman, D. Hojnacki, P. Zamboni, R. Zivadinov, K. Chadha, A. Lieberman, L. Kazim, A. Drake, P. Rocco, et al 2008. Soluble receptor for advanced glycation end products in multiple sclerosis: a potential marker of disease severity. Mult. Scler. 14: 759-763.
Hofmann, M. A., S. Drury, B. I. Hudson, M. R. Gleason, W. Qu, Y. Lu, E. Lalla, S. Chitnis, J. Monteiro, M. H. Stickland, et al 2002. RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response. Genes Immun. 3: 123-135.