In vivo nanoscopic landscape of neurexin ligands underlying anterograde synapse specification

Neuron - Tập 110 - Trang 3168-3185.e8 - 2022
Kazuya Nozawa1, Taku Sogabe1, Ayumi Hayashi1, Junko Motohashi1, Eriko Miura1, Itaru Arai1, Michisuke Yuzaki1
1Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan

Tài liệu tham khảo

Aoto, 2013, Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking, Cell, 154, 75, 10.1016/j.cell.2013.05.060 Ban, 2021, Prickle promotes the formation and maintenance of glutamatergic synapses by stabilizing the intercellular planar cell polarity complex, Sci. Adv., 7, eabh2974, 10.1126/sciadv.abh2974 Biederer, 2017, Transcellular nanoalignment of synaptic function, Neuron, 96, 680, 10.1016/j.neuron.2017.10.006 Boucard, 2012, High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex, J. Biol. Chem., 287, 9399, 10.1074/jbc.M111.318659 Broadhead, 2016, PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits, Sci. Rep., 6, 24626, 10.1038/srep24626 Budreck, 2013, Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling, Proc. Natl. Acad. Sci. USA, 110, 725, 10.1073/pnas.1214718110 Chamma, 2016, Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin, Nat. Commun., 7, 10773, 10.1038/ncomms10773 Chen, 2015, Optical imaging. Expansion microscopy, Science, 347, 543, 10.1126/science.1260088 Chen, 2020, Phase separation at the synapse, Nat. Neurosci., 23, 301, 10.1038/s41593-019-0579-9 Chen, 2008, NS21: re-defined and modified supplement B27 for neuronal cultures, J. Neurosci. Methods, 171, 239, 10.1016/j.jneumeth.2008.03.013 Choquet, 2021, Advanced imaging and labelling methods to decipher brain cell organization and function, Nat. Rev. Neurosci., 22, 237, 10.1038/s41583-021-00441-z Chozinski, 2016, Expansion microscopy with conventional antibodies and fluorescent proteins, Nat. Methods, 13, 485, 10.1038/nmeth.3833 Chubykin, 2007, Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2, Neuron, 54, 919, 10.1016/j.neuron.2007.05.029 Clark, 2002, Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor-only synapse, J. Neurosci., 22, 4428, 10.1523/JNEUROSCI.22-11-04428.2002 Dani, 2010, Superresolution imaging of chemical synapses in the brain, Neuron, 68, 843, 10.1016/j.neuron.2010.11.021 de Wit, 2016, Specification of synaptic connectivity by cell surface interactions, Nat. Rev. Neurosci., 17, 22, 10.1038/nrn.2015.3 de Wit, 2009, LRRTM2 interacts with Neurexin1 and regulates excitatory synapse formation, Neuron, 64, 799, 10.1016/j.neuron.2009.12.019 Dean, 2003, Neurexin mediates the assembly of presynaptic terminals, Nat. Neurosci., 6, 708, 10.1038/nn1074 Dehairs, 2016, CRISP-ID: decoding CRISPR mediated indels by Sanger sequencing, Sci. Rep., 6, 28973, 10.1038/srep28973 Elegheert, 2016, Structural basis for integration of GluD receptors within synaptic organizer complexes, Science, 353, 295, 10.1126/science.aae0104 Fabrichny, 2007, Structural analysis of the synaptic protein neuroligin and its beta-neurexin complex: determinants for folding and cell adhesion, Neuron, 56, 979, 10.1016/j.neuron.2007.11.013 Fukata, 2021, LGI1-ADAM22-MAGUK configures transsynaptic nanoalignment for synaptic transmission and epilepsy prevention, Proc. Natl. Acad. Sci. USA, 118, 10.1073/pnas.2022580118 Fukata, 2013, Local palmitoylation cycles define activity-regulated postsynaptic subdomains, J. Cell Biol., 202, 145, 10.1083/jcb.201302071 Furlanis, 2019, Landscape of ribosome-engaged transcript isoforms reveals extensive neuronal-cell-class-specific alternative splicing programs, Nat. Neurosci., 22, 1709, 10.1038/s41593-019-0465-5 Gomez, 2021, Neurexins: molecular codes for shaping neuronal synapses, Nat. Rev. Neurosci., 22, 137, 10.1038/s41583-020-00415-7 Goncalves, 2020, Nanoscale co-organization and coactivation of AMPAR, NMDAR, and mGluR at excitatory synapses, Proc. Natl. Acad. Sci. USA, 117, 14503, 10.1073/pnas.1922563117 Haas, 2018, Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency, eLife, 7, e31755, 10.7554/eLife.31755 Hayashi, 2015, Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics, Mol. Biol. Cell, 26, 1743, 10.1091/mbc.E14-08-1287 Heine, 2020, Asymmetry Between pre- and postsynaptic transient nanodomains shapes neuronal communication, Trends Neurosci., 43, 182, 10.1016/j.tins.2020.01.005 Hirai, 2005, Cbln1 is essential for synaptic integrity and plasticity in the cerebellum, Nat. Neurosci., 8, 1534, 10.1038/nn1576 Hosokawa, 2021, CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation, Nat. Neurosci., 24, 777, 10.1038/s41593-021-00843-3 Hruska, 2018, Synaptic nanomodules underlie the organization and plasticity of spine synapses, Nat. Neurosci., 21, 671, 10.1038/s41593-018-0138-9 Ibata, 2019, Activity-dependent secretion of synaptic organizer Cbln1 from lysosomes in granule cell axons, Neuron, 102, 1184, 10.1016/j.neuron.2019.03.044 Iijima, 2009, Activity-dependent repression of Cbln1 expression: mechanism for developmental and homeostatic regulation of synapses in the cerebellum, J. Neurosci., 29, 5425, 10.1523/JNEUROSCI.4473-08.2009 Iijima, 2011, SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1, Cell, 147, 1601, 10.1016/j.cell.2011.11.028 Ito-Ishida, 2014, Cbln1 downregulates the formation and function of inhibitory synapses in mouse cerebellar Purkinje cells, Eur. J. Neurosci., 39, 1268, 10.1111/ejn.12487 Ito-Ishida, 2008, Cbln1 regulates rapid formation and maintenance of excitatory synapses in mature cerebellar Purkinje cells in vitro and in vivo, J. Neurosci., 28, 5920, 10.1523/JNEUROSCI.1030-08.2008 Kaneko, 2002, Complementary distribution of vesicular glutamate transporters in the central nervous system, Neurosci. Res., 42, 243, 10.1016/S0168-0102(02)00009-3 Kharazia, 1997, Tangential synaptic distribution of NMDA and AMPA receptors in rat neocortex, Neurosci. Lett., 238, 41, 10.1016/S0304-3940(97)00846-X Kim, 2004, PDZ domain proteins of synapses, Nat. Rev. Neurosci., 5, 771, 10.1038/nrn1517 Ko, 2009, LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation, Neuron, 64, 791, 10.1016/j.neuron.2009.12.012 Ko, 2009, Neuroligin-1 performs neurexin-dependent and neurexin-independent functions in synapse validation, EMBO J., 28, 3244, 10.1038/emboj.2009.249 Koehnke, 2010, Splice form dependence of beta-neurexin/neuroligin binding interactions, Neuron, 67, 61, 10.1016/j.neuron.2010.06.001 Konno, 2014, Enriched expression of GluD1 in higher brain regions and its involvement in parallel fiber-interneuron synapse formation in the cerebellum, J. Neurosci., 34, 7412, 10.1523/JNEUROSCI.0628-14.2014 Kono, 2019, Interneuronal NMDA receptors regulate long-term depression and motor learning in the cerebellum, J. Physiol., 597, 903, 10.1113/JP276794 Krishnan, 2017, Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1, Nature, 543, 507, 10.1038/nature21678 Lukacsovich, 2019, Single-cell RNA-seq reveals developmental origins and ontogenetic stability of neurexin alternative splicing profiles, Cell Rep., 27, 3752, 10.1016/j.celrep.2019.05.090 MacGillavry, 2013, Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors, Neuron, 78, 615, 10.1016/j.neuron.2013.03.009 Matsuda, 2016, Transsynaptic Modulation of Kainate Receptor Functions by C1q-like Proteins, Neuron, 90, 752, 10.1016/j.neuron.2016.04.001 Matsuda, 2010, Cbln1 is a ligand for an orphan glutamate receptor delta2, a bidirectional synapse organizer, Science, 328, 363, 10.1126/science.1185152 Matsuda, 2011, Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions, Eur. J. Neurosci., 33, 1447, 10.1111/j.1460-9568.2011.07638.x Miura, 2006, Distinct expression of Cbln family mRNAs in developing and adult mouse brains, Eur. J. Neurosci., 24, 750, 10.1111/j.1460-9568.2006.04950.x Nair, 2013, Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95, J. Neurosci., 33, 13204, 10.1523/JNEUROSCI.2381-12.2013 Nozawa, 2018, Cellular and subcellular localization of endogenous Neuroligin-1 in the cerebellum, Cerebellum, 17, 709, 10.1007/s12311-018-0966-x Otsuka, 2016, Roles of Cbln1 in non-motor functions of mice, J. Neurosci., 36, 11801, 10.1523/JNEUROSCI.0322-16.2016 Peixoto, 2012, Transsynaptic signaling by activity-dependent cleavage of neuroligin-1, Neuron, 76, 396, 10.1016/j.neuron.2012.07.006 Perez de Arce, 2015, Topographic mapping of the synaptic cleft into adhesive nanodomains, Neuron, 88, 1165, 10.1016/j.neuron.2015.11.011 Petreanu, 2009, The subcellular organization of neocortical excitatory connections, Nature, 457, 1142, 10.1038/nature07709 Ramsey, 2021, Subsynaptic positioning of AMPARs by LRRTM2 controls synaptic strength, Sci. Adv., 7, eabf3126, 10.1126/sciadv.abf3126 Reissner, 2008, Mutational analysis of the neurexin/neuroligin complex reveals essential and regulatory components, Proc. Natl. Acad. Sci. USA, 105, 15124, 10.1073/pnas.0801639105 Richter, 2018, Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy, EMBO J., 37, 139, 10.15252/embj.201695709 Rothman, 2018, NeuroMatic: an integrated open-source software toolkit for acquisition, analysis and simulation of electrophysiological data, Front. Neuroinform., 12, 14, 10.3389/fninf.2018.00014 Sakamoto, 2018, Synaptic weight set by Munc13-1 supramolecular assemblies, Nat. Neurosci., 21, 41, 10.1038/s41593-017-0041-9 Schindelin, 2012, Fiji: an open-source platform for biological-image analysis, Nat Methods, 9, 676, 10.1038/nmeth.2019 Schreiner, 2014, Targeted combinatorial alternative splicing generates brain region-specific repertoires of neurexins, Neuron, 84, 386, 10.1016/j.neuron.2014.09.011 Schroeder, 2018, A modular organization of LRR protein-mediated synaptic adhesion defines synapse identity, Neuron, 99, 329, 10.1016/j.neuron.2018.06.026 Shipman, 2012, Dimerization of postsynaptic neuroligin drives synaptic assembly via transsynaptic clustering of neurexin, Proc. Natl. Acad. Sci. USA., 109, 19432, 10.1073/pnas.1217633109 Siddiqui, 2010, LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development, J. Neurosci., 30, 7495, 10.1523/JNEUROSCI.0470-10.2010 Soler-Llavina, 2011, The neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo, Proc. Natl. Acad. Sci. USA, 108, 16502, 10.1073/pnas.1114028108 Südhof, 2017, Synaptic neurexin complexes: A molecular code for the logic of neural circuits, Cell, 171, 745, 10.1016/j.cell.2017.10.024 Südhof, 2018, Towards an understanding of synapse formation, Neuron, 100, 276, 10.1016/j.neuron.2018.09.040 Suzuki, 2020, A synthetic synaptic organizer protein restores glutamatergic neuronal circuits, Science, 369, eabb4853, 10.1126/science.abb4853 Suzuki, 2012, Activity-dependent proteolytic cleavage of neuroligin-1, Neuron, 76, 410, 10.1016/j.neuron.2012.10.003 Takeo, 2015, RORalpha regulates multiple aspects of dendrite development in cerebellar Purkinje cells in vivo, J. Neurosci., 35, 12518, 10.1523/JNEUROSCI.0075-15.2015 Tang, 2016, A trans-synaptic nanocolumn aligns neurotransmitter release to receptors, Nature, 536, 210, 10.1038/nature19058 Tillberg, 2016, Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies, Nat. Biotechnol., 34, 987, 10.1038/nbt.3625 Treutlein, 2014, Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing, Proc. Natl. Acad. Sci. USA, 111, E1291, 10.1073/pnas.1403244111 Trotter, 2019, Synaptic neurexin-1 assembles into dynamically regulated active zone nanoclusters, J. Cell Biol., 218, 2677, 10.1083/jcb.201812076 Truckenbrodt, 2018, X10 expansion microscopy enables 25-nm resolution on conventional microscopes, EMBO Rep., 19, e45836, 10.15252/embr.201845836 Truckenbrodt, 2019, A practical guide to optimization in x10 expansion microscopy, Nat. Protoc., 14, 832, 10.1038/s41596-018-0117-3 Uchida, 1996, The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones, J. Cell Biol., 135, 767, 10.1083/jcb.135.3.767 Uchigashima, 2020, Specific Neuroligin3-αNeurexin1 signaling regulates GABAergic synaptic function in mouse hippocampus, eLife, 9, e59545, 10.7554/eLife.59545 Uemura, 2010, Trans-synaptic interaction of GluRdelta2 and neurexin through Cbln1 mediates synapse formation in the cerebellum, Cell, 141, 1068, 10.1016/j.cell.2010.04.035 Waites, 2005, Mechanisms of vertebrate synaptogenesis, Annu. Rev. Neurosci., 28, 251, 10.1146/annurev.neuro.27.070203.144336 Wang, 1995, An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule, FEBS Lett., 360, 111, 10.1016/0014-5793(95)00062-E Wegner, 2018, In vivo STED microscopy visualizes PSD95 sub-structures and morphological changes over several hours in the mouse visual cortex, Sci. Rep., 8, 219, 10.1038/s41598-017-18640-z Yamagata, 2018, Structural insights into modulation and selectivity of transsynaptic neurexin-LRRTM interaction, Nat. Commun., 9, 3964, 10.1038/s41467-018-06333-8 Yuzaki, 2018, Two classes of secreted synaptic organizers in the central nervous system, Annu. Rev. Physiol., 80, 243, 10.1146/annurev-physiol-021317-121322 Zhang, 2015, Neuroligins sculpt cerebellar Purkinje-cell circuits by differential control of distinct classes of synapses, Neuron, 87, 781, 10.1016/j.neuron.2015.07.020 Zhang, 2016, Neuroligins are selectively essential for NMDAR signaling in cerebellar stellate interneurons, J. Neurosci., 36, 9070, 10.1523/JNEUROSCI.1356-16.2016