Randomization in Laboratory Procedure Is Key to Obtaining Reproducible Microarray Results

PLoS ONE - Tập 3 Số 11 - Trang e3724
Hyuna Yang1, Christina A. Harrington2, Kristina Vartanian2, Christopher D. Coldren3, Rob Hall4, Gary A. Churchill1
1The Jackson Laboratory, Bar Harbor, Maine, United States of America.
2Gene Microarray Shared Resource, OHSU Cancer Institute, Oregon Health and Science University, Portland, Oregon, United States of America
3Pulmonary Sciences and Critical Care Medicine University of Colorado Health Sciences Center, Denver, Colorado, United States of America
4Center for Array Technologies, Department of Microbiology, University of Washington, Seattle, Washington, United States of America

Tóm tắt

Từ khóa


Tài liệu tham khảo

A Brazma, 2000, One-stop shop for microarray data., Nature, 403, 699, 10.1038/35001676

RA Irizarry, 2005, Multiple-laboratory comparison of microarray platforms., Nature Methods, 2, 345, 10.1038/nmeth756

JE Larkin, 2005, Independence and reproducibility across microarray platforms., Nature Methods, 2, 337, 10.1038/nmeth757

2005, Standardizing global gene expression analysis between laboratories and across platforms., Nature Methods, 2, 351, 10.1038/nmeth754

JF Waring, 2004, Inter-laboratory evaluation of rat hepatic gene expression changes induced by methapyrilene., Environ Health Perspect, 112, 439, 10.1289/ehp.6643

BJ Singer, 2004, Genetic Dissection of Complex Traits with Chromosome Substitution Strains of Mice., Science, 304, 445, 10.1126/science.1093139

L Bullinger, 2004, Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia., N Engl J Med, 350, 1605, 10.1056/NEJMoa031046

PJ Valk, 2004, Prognostically useful gene-expression profiles in acute myeloid leukemia., N Engl J Med, 350, 1617, 10.1056/NEJMoa040465

P Tamayo, 2007, Metagene projection for cross-platform, cross-species characterization of global transcriptional states., Proc Natl Acad Sci USA, 104, 5959, 10.1073/pnas.0701068104

S Dudoit, 2000, Comparison of discrimination methods for the classification of tumors using gene expression data., Journal of the American Statistical Association, 97, 77, 10.1198/016214502753479248

RA Irizarry, 2003, Summaries of Affymetrix GeneChip probe level data., Nucleic Acid Res, 32, e15, 10.1093/nar/gng015

Y Benjamini, 1995, Controlling the false discovery rate: a practical and powerful approach to multiple testing., Journal of the Royal Statistical Society. Series B, 57, 289

JD Storey, 2002, A direct approach to false discovery rates., Journal of the Royal Statistical Society Series B, 64, 479, 10.1111/1467-9868.00346

2002, Gene Ontology: tool for the unification of biology., Nature Genet, 25, 25

S Falcon, 2007, Using GOstats to test gene lists for GO term association., Bioinformatics, 23, 257, 10.1093/bioinformatics/btl567

JT Leek, 2007, Capturing heterogeneity in gene expression studies by surrogate variable analysis., PLoS Genetics, 3, e161, 10.1371/journal.pgen.0030161

D Seo, 2007, Of mice and men: Sparse statistical modeling in cardiovascular genomics., Ann Appl Statist, 1, 152, 10.1214/07-AOAS110

KR Shockley, 2006, Gene expression analysis of mouse chromosome substitution strains., Mamm Genome, 17, 598, 10.1007/s00335-005-0176-y

R Ihaka, 1996, A Language for Data Analysis and Graphics., Journal of Graphical and Computational Statistics, 5, 299

X Cui, 2005, Improved statistical tests for differential gene expression by shrinking variance components estimates., Biostatistics, 6, 59, 10.1093/biostatistics/kxh018

GK Smyth, 2004, Linear models and empirical Bayes methods for assessing differential expression in microarray experiments., Statistical applications in Genetics and Molecular Biology, 3, Article 3, 10.2202/1544-6115.1027

R Opgen-Rhein, 2007, Accurate ranking of differentially expressed genes by a distribution-free shrinkage approach., Statist Appl Genet Mol Biol, 6, Article 9, 10.2202/1544-6115.1252

JA Hartigan, 1975, Clustering Algorithms