How to get out: ssRNA enveloped viruses and membrane fission
Tài liệu tham khảo
McMahon, 2011, Molecular mechanism and physiological functions of clathrin-mediated endocytosis, Nat Rev Mol Cell Biol, 12, 517, 10.1038/nrm3151
Popoff, 2011, COPI budding within the Golgi stack, Cold Spring Harb Perspect Biol, 3, a005231, 10.1101/cshperspect.a005231
Zanetti, 2011, COPII and the regulation of protein sorting in mammals, Nat Cell Biol, 14, 20, 10.1038/ncb2390
Johannes, 2011, Retrograde transport: two (or more) roads diverged in an endosomal tree?, Traffic, 12, 956, 10.1111/j.1600-0854.2011.01200.x
Lundmark, 2010, Driving membrane curvature in clathrin-dependent and clathrin-independent endocytosis, Semin Cell Dev Biol, 21, 363, 10.1016/j.semcdb.2009.11.014
Henne, 2011, The ESCRT pathway, Dev Cell, 21, 77, 10.1016/j.devcel.2011.05.015
Ferguson, 2012, Dynamin, a membrane-remodelling GTPase, Nat Rev Mol Cell Biol, 13, 75, 10.1038/nrm3266
Schmid, 2011, Dynamin: functional design of a membrane fission catalyst, Annu Rev Cell Dev Biol, 27, 79, 10.1146/annurev-cellbio-100109-104016
Roux, 2006, GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission, Nature, 441, 528, 10.1038/nature04718
Morlot, 2012, Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction, Cell, 151, 619, 10.1016/j.cell.2012.09.017
Oh, 1998, Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium, J Cell Biol, 141, 101, 10.1083/jcb.141.1.101
Chan, 2012, Fusion and fission: interlinked processes critical for mitochondrial health, Annu Rev Genet, 46, 265, 10.1146/annurev-genet-110410-132529
Boucrot, 2012, Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains, Cell, 149, 124, 10.1016/j.cell.2012.01.047
Campelo, 2012, Membrane fission: the biogenesis of transport carriers, Annu Rev Biochem, 81, 407, 10.1146/annurev-biochem-051710-094912
Hurley, 2010, Membrane budding and scission by the ESCRT machinery: it's all in the neck, Nat Rev Mol Cell Biol, 11, 556, 10.1038/nrm2937
Sundquist, 2012, HIV-1 assembly, budding, and maturation, Cold Spring Harb Perspect Med, 2, a006924, 10.1101/cshperspect.a015420
Martin-Serrano, 2011, Host factors involved in retroviral budding and release, Nat Rev Microbiol, 9, 519, 10.1038/nrmicro2596
Peel, 2011, Divergent pathways lead to ESCRT-III catalyzed membrane fission, Trends Biochem Sci, 36, 199, 10.1016/j.tibs.2010.09.004
Julicher, 1993, Domain-induced budding of vesicles, Phys Rev Lett, 70, 2964, 10.1103/PhysRevLett.70.2964
Baumgart, 2003, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, Nature, 425, 821, 10.1038/nature02013
Allain, 2004, Fission of a multiphase membrane tube, Phys Rev Lett, 93, 158104, 10.1103/PhysRevLett.93.158104
Liu, 2006, Endocytic vesicle scission by lipid phase boundary forces, Proc Natl Acad Sci U S A, 103, 10277, 10.1073/pnas.0601045103
Lingwood, 2008, Plasma membranes are poised for activation of raft phase coalescence at physiological temperature, Proc Natl Acad Sci U S A, 105, 10005, 10.1073/pnas.0804374105
Liu, 2006, Actin polymerization serves as a membrane domain switch in model lipid bilayers, Biophys J, 91, 4064, 10.1529/biophysj.106.090852
Romer, 2010, Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis, Cell, 140, 540, 10.1016/j.cell.2010.01.010
Zhang, 2009, Size-dependent endocytosis of nanoparticles, Adv Mater, 21, 419, 10.1002/adma.200801393
van Effenterre, 2003, Adhesion of colloids on a cell surface in competition for mobile receptors, Europhys Lett, 64, 543, 10.1209/epl/i2003-00268-x
Yuan, 2010, Variable nanoparticle-cell adhesion strength regulates cellular uptake, Phys Rev Lett, 105, 138101, 10.1103/PhysRevLett.105.138101
Noguchi, 2002, Adhesion of nanoparticles to vesicles: a Brownian dynamics simulation, Biophys J, 83, 299, 10.1016/S0006-3495(02)75170-9
Cooke, 2006, Coupling between lipid shape and membrane curvature, Biophys J, 91, 487, 10.1529/biophysj.105.078683
Teis, 2008, Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation, Dev Cell, 15, 578, 10.1016/j.devcel.2008.08.013
Saksena, 2009, Functional reconstitution of ESCRT-III assembly and disassembly, Cell, 136, 97, 10.1016/j.cell.2008.11.013
Wollert, 2009, Membrane scission by the ESCRT-III complex, Nature, 458, 172, 10.1038/nature07836
Wollert, 2010, Molecular mechanism of multivesicular body biogenesis by ESCRT complexes, Nature, 464, 864, 10.1038/nature08849
Baumgartel, 2011, Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component, Nat Cell Biol, 13, 469, 10.1038/ncb2215
Morita, 2004, Retrovirus budding, Annu Rev Cell Dev Biol, 20, 395, 10.1146/annurev.cellbio.20.010403.102350
Caballe, 2011, ESCRT machinery and cytokinesis: the road to daughter cell separation, Traffic, 12, 1318, 10.1111/j.1600-0854.2011.01244.x
Guizetti, 2012, ESCRT-III polymers in membrane neck constriction, Trends Cell Biol, 22, 133, 10.1016/j.tcb.2011.11.007
Bajorek, 2009, Biochemical analyses of human IST1 and its function in cytokinesis, Mol Biol Cell, 20, 1360, 10.1091/mbc.E08-05-0475
Agromayor, 2009, Essential role of hIST1 in cytokinesis, Mol Biol Cell, 20, 1374, 10.1091/mbc.E08-05-0474
Dimaano, 2008, Ist1 regulates vps4 localization and assembly, Mol Biol Cell, 19, 465, 10.1091/mbc.E07-08-0747
Rue, 2008, Novel Ist1-Did2 complex functions at a late step in multivesicular body sorting, Mol Biol Cell, 19, 475, 10.1091/mbc.E07-07-0694
Morita, 2010, Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance, Proc Natl Acad Sci U S A, 107, 12889, 10.1073/pnas.1005938107
Morita, 2011, ESCRT-III protein requirements for HIV-1 budding, Cell Host Microbe, 9, 235, 10.1016/j.chom.2011.02.004
Jouvenet, 2011, Dynamics of ESCRT protein recruitment during retroviral assembly, Nat Cell Biol, 13, 394, 10.1038/ncb2207
Effantin, 2012, ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding, Cell Microbiol, 15, 213, 10.1111/cmi.12041
Carlson, 2012, In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters, Proc Natl Acad Sci U S A, 109, 16928, 10.1073/pnas.1211759109
Muziol, 2006, Structural basis for budding by the ESCRT-III factor CHMP3, Dev Cell, 10, 821, 10.1016/j.devcel.2006.03.013
Bajorek, 2009, Structural basis for ESCRT-III protein autoinhibition, Nat Struct Mol Biol, 16, 754, 10.1038/nsmb.1621
Xiao, 2009, Structural basis of Ist1 function and Ist1–Did2 interaction in the multivesicular body pathway and cytokinesis, Mol Biol Cell, 20, 3514, 10.1091/mbc.E09-05-0403
Zamborlini, 2006, Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding, Proc Natl Acad Sci U S A, 103, 19140, 10.1073/pnas.0603788103
Shim, 2007, Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain, Traffic, 8, 1068, 10.1111/j.1600-0854.2007.00584.x
Lata, 2008, Structural basis for autoinhibition of ESCRT-III CHMP3, J Mol Biol, 378, 818, 10.1016/j.jmb.2008.03.030
Hanson, 2008, Plasma membrane deformation by circular arrays of ESCRT-III protein filaments, J Cell Biol, 180, 389, 10.1083/jcb.200707031
Bodon, 2011, Charged multivesicular body protein 2B (CHMP2B) of the endosomal sorting complex required for transport-III (ESCRT-III) polymerizes into helical structures deforming the plasma membrane, J Biol Chem, 286, 40276, 10.1074/jbc.M111.283671
Pires, 2009, A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments, Structure, 17, 843, 10.1016/j.str.2009.04.007
Ghazi-Tabatabai, 2008, Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24, Structure, 16, 1345, 10.1016/j.str.2008.06.010
Lata, 2008, Helical structures of ESCRT-III are disassembled by VPS4, Science, 321, 1354, 10.1126/science.1161070
Henne, 2012, The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices, Cell, 151, 356, 10.1016/j.cell.2012.08.039
Guizetti, 2011, Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments, Science, 331, 1616, 10.1126/science.1201847
Jouvenet, 2012, Dynamics of ESCRT proteins, Cell Mol Life Sci, 69, 4121, 10.1007/s00018-012-1035-0
Lata, 2009, Structure and function of ESCRT-III, Biochem Soc Trans, 37, 156, 10.1042/BST0370156
Lenz, 2009, Membrane buckling induced by curved filaments, Phys Rev Lett, 103, 038101, 10.1103/PhysRevLett.103.038101
Fabrikant, 2009, Computational model of membrane fission catalyzed by ESCRT-III, PLoS Comput Biol, 5, e1000575, 10.1371/journal.pcbi.1000575
Babst, 2011, Regulation of Vps4 during MVB sorting and cytokinesis, Traffic, 12, 1298, 10.1111/j.1600-0854.2011.01230.x
Elia, 2011, Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission, Proc Natl Acad Sci U S A, 108, 4846, 10.1073/pnas.1102714108
Elia, 2012, Computational model of cytokinetic abscission driven by ESCRT-III polymerization and remodeling, Biophys J, 102, 2309, 10.1016/j.bpj.2012.04.007
Boura, 2012, Solution structure of the ESCRT-I and -II supercomplex: implications for membrane budding and scission, Structure, 20, 874, 10.1016/j.str.2012.03.008
Rozycki, 2012, Membrane-elasticity model of coatless vesicle budding induced by ESCRT complexes, PLoS Comput Biol, 8, e1002736, 10.1371/journal.pcbi.1002736
Boura, 2012, Endosomal sorting complex required for transport (ESCRT) complexes induce phase-separated microdomains in supported lipid bilayers, J Biol Chem, 287, 28144, 10.1074/jbc.M112.378646
Bieniasz, 2009, The cell biology of HIV-1 virion genesis, Cell Host Microbe, 5, 550, 10.1016/j.chom.2009.05.015
Weiss, 2011, The role of cellular factors in promoting HIV budding, J Mol Biol, 410, 525, 10.1016/j.jmb.2011.04.055
Freed, 2006, The cell biology of HIV-1 and other retroviruses, Retrovirology, 3, 77, 10.1186/1742-4690-3-77
Bieniasz, 2006, Late budding domains and host proteins in enveloped virus release, Virology, 344, 55, 10.1016/j.virol.2005.09.044
Okumura, 2011, Rabies virus assembly and budding, Adv Virus Res, 79, 23, 10.1016/B978-0-12-387040-7.00002-0
Hartlieb, 2006, Filovirus assembly and budding, Virology, 344, 64, 10.1016/j.virol.2005.09.018
Dolnik, 2008, Filoviruses: interactions with the host cell, Cell Mol Life Sci, 65, 756, 10.1007/s00018-007-7406-2
Liu, 2010, Viral and host proteins that modulate filovirus budding, Future Virol, 5, 481, 10.2217/fvl.10.33
Harrison, 2010, Paramyxovirus assembly and budding: building particles that transmit infections, Int J Biochem Cell Biol, 42, 1416, 10.1016/j.biocel.2010.04.005
Groseth, 2010, Efficient budding of the tacaribe virus matrix protein z requires the nucleoprotein, J Virol, 84, 3603, 10.1128/JVI.02429-09
Emonet, 2011, Arenavirus reverse genetics: new approaches for the investigation of arenavirus biology and development of antiviral strategies, Virology, 411, 416, 10.1016/j.virol.2011.01.013
Watanabe, 2010, Influenza virus budding does not require a functional AAA+ ATPase, VPS4, Virus Res, 153, 58, 10.1016/j.virusres.2010.07.006
Rossman, 2010, Influenza virus M2 protein mediates ESCRT-independent membrane scission, Cell, 142, 902, 10.1016/j.cell.2010.08.029
Rossman, 2011, Influenza virus assembly and budding, Virology, 411, 229, 10.1016/j.virol.2010.12.003
Ruch, 2012, The coronavirus E protein: assembly and beyond, Viruses, 4, 363, 10.3390/v4030363
Raamsman, 2000, Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E, J Virol, 74, 2333, 10.1128/JVI.74.5.2333-2342.2000
Arbely, 2004, A highly unusual palindromic transmembrane helical hairpin formed by SARS coronavirus E protein, J Mol Biol, 341, 769, 10.1016/j.jmb.2004.06.044
Kuo, 2003, The small envelope protein E is not essential for murine coronavirus replication, J Virol, 77, 4597, 10.1128/JVI.77.8.4597-4608.2003
DeDiego, 2007, A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo, J Virol, 81, 1701, 10.1128/JVI.01467-06
Ortego, 2007, Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway, Virology, 368, 296, 10.1016/j.virol.2007.05.032
Mukhopadhyay, 2005, A structural perspective of the flavivirus life cycle, Nat Rev Microbiol, 3, 13, 10.1038/nrmicro1067
Vaney, 2011, Class II enveloped viruses, Cell Microbiol, 13, 1451, 10.1111/j.1462-5822.2011.01653.x
Fontana, 2007, Novel replication complex architecture in rubella replicon-transfected cells, Cell Microbiol, 9, 875, 10.1111/j.1462-5822.2006.00837.x
Kujala, 2001, Biogenesis of the Semliki Forest virus RNA replication complex, J Virol, 75, 3873, 10.1128/JVI.75.8.3873-3884.2001
Jose, 2009, A structural and functional perspective of alphavirus replication and assembly, Future Microbiol, 4, 837, 10.2217/fmb.09.59
Lescar, 2001, The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH, Cell, 105, 137, 10.1016/S0092-8674(01)00303-8
Voss, 2010, Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography, Nature, 468, 709, 10.1038/nature09555
Taylor, 2007, Ubiquitin depletion and dominant-negative VPS4 inhibit rhabdovirus budding without affecting alphavirus budding, J Virol, 81, 13631, 10.1128/JVI.01688-07
Fontana, 2008, The unique architecture of Bunyamwera virus factories around the Golgi complex, Cell Microbiol, 10, 2012, 10.1111/j.1462-5822.2008.01184.x
Hepojoki, 2010, Cytoplasmic tails of hantavirus glycoproteins interact with the nucleocapsid protein, J Gen Virol, 91, 2341, 10.1099/vir.0.021006-0
Strandin, 2011, The cytoplasmic tail of hantavirus Gn glycoprotein interacts with RNA, Virology, 418, 12, 10.1016/j.virol.2011.06.030
Huiskonen, 2010, Electron cryotomography of Tula hantavirus suggests a unique assembly paradigm for enveloped viruses, J Virol, 84, 4889, 10.1128/JVI.00057-10
Overby, 2008, Insights into bunyavirus architecture from electron cryotomography of Uukuniemi virus, Proc Natl Acad Sci U S A, 105, 2375, 10.1073/pnas.0708738105
Freiberg, 2008, Three-dimensional organization of Rift Valley fever virus revealed by cryoelectron tomography, J Virol, 82, 10341, 10.1128/JVI.01191-08
Huiskonen, 2009, Electron cryo-microscopy and single-particle averaging of Rift Valley fever virus: evidence for GN–GC glycoprotein heterodimers, J Virol, 83, 3762, 10.1128/JVI.02483-08
Bartenschlager, 2011, Assembly of infectious hepatitis C virus particles, Trends Microbiol, 19, 95, 10.1016/j.tim.2010.11.005
Murray, 2008, Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis, Nat Rev Microbiol, 6, 699, 10.1038/nrmicro1928
Carpp, 2011, Interaction between the yellow fever virus nonstructural protein NS3 and the host protein Alix contributes to the release of infectious particles, Microbes Infect, 13, 85, 10.1016/j.micinf.2010.10.010
Chiou, 2003, Association of Japanese encephalitis virus NS3 protein with microtubules and tumour susceptibility gene 101 (TSG101) protein, J Gen Virol, 84, 2795, 10.1099/vir.0.19201-0
Ariumi, 2011, The ESCRT system is required for hepatitis C virus production, PLoS ONE, 6, e14517, 10.1371/journal.pone.0014517
Kamada, 2012, Generation of a recombinant reporter hepatitis C virus useful for the analyses of virus entry, intra-cellular replication and virion production, Microbes Infect, 14, 69, 10.1016/j.micinf.2011.08.009
Corless, 2010, Vps4 and the ESCRT-III complex are required for the release of infectious hepatitis C virus particles, J Gen Virol, 91, 362, 10.1099/vir.0.017285-0
Tamai, 2012, Regulation of hepatitis C virus secretion by the Hrs-dependent exosomal pathway, Virology, 422, 377, 10.1016/j.virol.2011.11.009
Chen, 2008, Mechanisms for enveloped virus budding: can some viruses do without an ESCRT?, Virology, 372, 221, 10.1016/j.virol.2007.11.008