Stepwise approach to reduce the costs and environmental impacts of grinding processes

Marius Winter1, Wen Li2, Sami Kara2, Christoph Herrmann1
1Sustainable Manufacturing and Life Cycle Engineering Research Group, Institute of Machine Tools and Production Technology (IWF), Technische Universität Braunschweig, Braunschweig, Germany
2Sustainable Manufacturing and Life Cycle Engineering Research Group, School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, Australia

Tóm tắt

Grinding is a common finishing process to meet specific technological requirements; however, it is energy, resource and time consuming. Thus, the improvement of grinding processes should not only consider the technological requirements but also environmental and economic impacts. There are a number of factors involved in grinding processes. Besides the process parameters and workpiece properties, there are three enabling factors for improvement opportunities, such as tool, cutting fluid and machine tool. However, in practice, not all factors can be changed or modified easily at the same time. To support process improvement, this paper proposes a stepwise approach to compare alternative enabling factors in conjunction with the process parameters in order to reduce the costs and environmental impacts of a grinding process under consideration of technological requirements. The proposed approach is demonstrated by means of an internal cylindrical grinding process and applications of different tools, cutting fluid and machine tools.

Tài liệu tham khảo

Li W, Winter M, Kara S, Herrmann C (2012) Eco-efficiency of manufacturing processes: a grinding case. CIRP Ann Manuf Technol 61(1):59–62 Boothroyd G (1994) Product design for manufacture and assembly. Comput Aided Des 26(7):505–520 Edwards KL (2002) Towards more strategic product design for manufacture and assembly: priorities for concurrent engineering. Mat Des 23(7):651–656 Herrmann C (2010) Ganzheitliches Life Cycle Management—Nachhaltigkeit und Lebenszyklus-orientierung in Unternehmen. Springer, Berlin Klocke F, König W (2005) Fertigungsverfahren 2—Schleifen, Honen, Läppen. Springer, Berlin Czenkusch C (2000) Technologische Untersuchungen und Prozessmodelle zum Rundschleifen. Dissertation, Universität Hannover Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. The 13th CIRP International Conference on Life Cycle Engineering, Leuven Duflou JR, Sutherland JW, Dornfeld D, Herrmann C, Jeswiet J, Kara S, Hauschild M, Kellens K (2012) Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Ann Manuf Technol 61(2):587–609 Zein A (2012) Transition towards energy efficient machine tools. Springer, Berlin Behrendt T, Zein A, Min S (2012) Development of an energy consumption monitoring procedure for machine tools. CIRP Ann Manuf Technol 61(1):43–46 Heinzel C (1999) Methoden zur Untersuchung und Optimierung der Kühlschmierung beim Schleifen. Dissertation, Universität Bremen Oliveira JFG, Alves SM (2006) Development of environmentally friendly fluid for CBN grinding. CIRP Ann Manuf Technol 55(1):343–346 Winter M, Bock R, Herrmann C, Stache H, Wichmann H, Bahadir M (2012) Technological evaluation of a novel glycerol based biocide-free metalworking fluid. J Clean Prod 35:176–182 Dettmer T (2006) Nichtwassermischbare Kühlschmierstoffe auf Basis nachwachsender Rohstoffe. Dissertation, Technische Universität Braunschweig Herrmann C, Hesselbach J, Bock R, Zein A, Öhlschläger G, Dettmer T (2007) Ecologically benign lubricants—evaluation from a life cycle perspective. CLEAN—soil, air. Water 35(5):427–432 Wichmann H, Stache H, Schmidt C, Winter M, Bock R, Herrmann C, Bahadir M (2013) Ecological and economic evaluation of a novel glycerol based biocide-free metalworking fluid. J Clean Prod 43:12–19 Heuer W (1992) Außenrundschleifen mit kleinen keramisch gebundenen CBN Schleifscheiben. Dissertation, Universität Hannover Linke K (1992) Kennwerte keramisch gebundener Schleifscheiben aus kubischem Bornitrid. Dissertation, Technische Universität Berlin Kirchgatter M (2010) Einsatzverhalten genuteter CBN-Schleifscheiben mit keramischer Bindung beim Außenrund-Einstechschleifen. Dissertation, Technische Universität Berlin ISO (2006) ISO 14040: environmental management—life cycle assessmentprinciples and framework. ISO 14040:2006(E). International Standards Organization, Geneva Linke B, Overcash M (2012) Life cycle analysis of grinding. 19th CIRP International conference on Life Cycle Engineering, Berkeley Li W (2012) Energy and eco-efficiency of manufacturing processes. The University of New South Wales, Sydney Murray VR, Zhao F, Sutherland JW (2012) Life cycle analysis of grinding: a case study of non-cylindrical computer numerical control grinding via a unit-process life cycle inventory approach. Proc Inst Mech Eng Part B: J Eng Manuf 226(10):1604–1611 World Bussiness Council for Sustainable Development (WBCSD) (2000) Eco-efficiency: creating more value with less impact. http://www.wbcsd.org/web/publications/eco_efficiency_creating_more_value.pdf. Accessed 23 March 2013 Montgomery DC (2009) Design and analysis of experiments, 7th edn. Wiley, New York Qu X, Wu CFJ (2005) One-factor-at-a-time designs of resolution V. J Stat Plan Infer 131(2):407–416 Marinescu ID, Rowe WB, Dimitrov D, Inasaki I (2004) Tribology of abrasive machining processes. William Andrew Inc, Norwich Malkin S, Guo C (2008) Grinding technology—theory and application of machining with abrasives. Industrial Press, New York Byers JP (2006) Metalworking fluids. CRC/Taylor & Francis, Boca Raton Tönshoff HK, Peters J, Inasaki I, Paul T (1992) Modelling and simulation of grinding processes. CIRP Ann Manuf Technol 41(2):677–688 Ecoinvent Centre (2010) Database ecoinvent Data v2.2. Centre for Life Cycle Inventories, Dübendorf Schröder C (2012) Industrielle Arbeitskosten im internationalen Vergleich, in IW-Trends, 3/2012, Köln Vits R (1985) Technologische Aspekte der Kühlschmierung beim Schleifen. Dissertation, RWTH Aachen