Stepwise approach to reduce the costs and environmental impacts of grinding processes
Tóm tắt
Grinding is a common finishing process to meet specific technological requirements; however, it is energy, resource and time consuming. Thus, the improvement of grinding processes should not only consider the technological requirements but also environmental and economic impacts. There are a number of factors involved in grinding processes. Besides the process parameters and workpiece properties, there are three enabling factors for improvement opportunities, such as tool, cutting fluid and machine tool. However, in practice, not all factors can be changed or modified easily at the same time. To support process improvement, this paper proposes a stepwise approach to compare alternative enabling factors in conjunction with the process parameters in order to reduce the costs and environmental impacts of a grinding process under consideration of technological requirements. The proposed approach is demonstrated by means of an internal cylindrical grinding process and applications of different tools, cutting fluid and machine tools.
Tài liệu tham khảo
Li W, Winter M, Kara S, Herrmann C (2012) Eco-efficiency of manufacturing processes: a grinding case. CIRP Ann Manuf Technol 61(1):59–62
Boothroyd G (1994) Product design for manufacture and assembly. Comput Aided Des 26(7):505–520
Edwards KL (2002) Towards more strategic product design for manufacture and assembly: priorities for concurrent engineering. Mat Des 23(7):651–656
Herrmann C (2010) Ganzheitliches Life Cycle Management—Nachhaltigkeit und Lebenszyklus-orientierung in Unternehmen. Springer, Berlin
Klocke F, König W (2005) Fertigungsverfahren 2—Schleifen, Honen, Läppen. Springer, Berlin
Czenkusch C (2000) Technologische Untersuchungen und Prozessmodelle zum Rundschleifen. Dissertation, Universität Hannover
Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. The 13th CIRP International Conference on Life Cycle Engineering, Leuven
Duflou JR, Sutherland JW, Dornfeld D, Herrmann C, Jeswiet J, Kara S, Hauschild M, Kellens K (2012) Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Ann Manuf Technol 61(2):587–609
Zein A (2012) Transition towards energy efficient machine tools. Springer, Berlin
Behrendt T, Zein A, Min S (2012) Development of an energy consumption monitoring procedure for machine tools. CIRP Ann Manuf Technol 61(1):43–46
Heinzel C (1999) Methoden zur Untersuchung und Optimierung der Kühlschmierung beim Schleifen. Dissertation, Universität Bremen
Oliveira JFG, Alves SM (2006) Development of environmentally friendly fluid for CBN grinding. CIRP Ann Manuf Technol 55(1):343–346
Winter M, Bock R, Herrmann C, Stache H, Wichmann H, Bahadir M (2012) Technological evaluation of a novel glycerol based biocide-free metalworking fluid. J Clean Prod 35:176–182
Dettmer T (2006) Nichtwassermischbare Kühlschmierstoffe auf Basis nachwachsender Rohstoffe. Dissertation, Technische Universität Braunschweig
Herrmann C, Hesselbach J, Bock R, Zein A, Öhlschläger G, Dettmer T (2007) Ecologically benign lubricants—evaluation from a life cycle perspective. CLEAN—soil, air. Water 35(5):427–432
Wichmann H, Stache H, Schmidt C, Winter M, Bock R, Herrmann C, Bahadir M (2013) Ecological and economic evaluation of a novel glycerol based biocide-free metalworking fluid. J Clean Prod 43:12–19
Heuer W (1992) Außenrundschleifen mit kleinen keramisch gebundenen CBN Schleifscheiben. Dissertation, Universität Hannover
Linke K (1992) Kennwerte keramisch gebundener Schleifscheiben aus kubischem Bornitrid. Dissertation, Technische Universität Berlin
Kirchgatter M (2010) Einsatzverhalten genuteter CBN-Schleifscheiben mit keramischer Bindung beim Außenrund-Einstechschleifen. Dissertation, Technische Universität Berlin
ISO (2006) ISO 14040: environmental management—life cycle assessmentprinciples and framework. ISO 14040:2006(E). International Standards Organization, Geneva
Linke B, Overcash M (2012) Life cycle analysis of grinding. 19th CIRP International conference on Life Cycle Engineering, Berkeley
Li W (2012) Energy and eco-efficiency of manufacturing processes. The University of New South Wales, Sydney
Murray VR, Zhao F, Sutherland JW (2012) Life cycle analysis of grinding: a case study of non-cylindrical computer numerical control grinding via a unit-process life cycle inventory approach. Proc Inst Mech Eng Part B: J Eng Manuf 226(10):1604–1611
World Bussiness Council for Sustainable Development (WBCSD) (2000) Eco-efficiency: creating more value with less impact. http://www.wbcsd.org/web/publications/eco_efficiency_creating_more_value.pdf. Accessed 23 March 2013
Montgomery DC (2009) Design and analysis of experiments, 7th edn. Wiley, New York
Qu X, Wu CFJ (2005) One-factor-at-a-time designs of resolution V. J Stat Plan Infer 131(2):407–416
Marinescu ID, Rowe WB, Dimitrov D, Inasaki I (2004) Tribology of abrasive machining processes. William Andrew Inc, Norwich
Malkin S, Guo C (2008) Grinding technology—theory and application of machining with abrasives. Industrial Press, New York
Byers JP (2006) Metalworking fluids. CRC/Taylor & Francis, Boca Raton
Tönshoff HK, Peters J, Inasaki I, Paul T (1992) Modelling and simulation of grinding processes. CIRP Ann Manuf Technol 41(2):677–688
Ecoinvent Centre (2010) Database ecoinvent Data v2.2. Centre for Life Cycle Inventories, Dübendorf
Schröder C (2012) Industrielle Arbeitskosten im internationalen Vergleich, in IW-Trends, 3/2012, Köln
Vits R (1985) Technologische Aspekte der Kühlschmierung beim Schleifen. Dissertation, RWTH Aachen