Influence of the NAO on Wintertime Surface Air Temperature over East Asia: Multidecadal Variability and Decadal Prediction
Tóm tắt
In this paper, we investigate the influence of the winter NAO on the multidecadal variability of winter East Asian surface air temperature (EASAT) and EASAT decadal prediction. The observational analysis shows that the winter EASAT and East Asian minimum SAT (EAmSAT) display strong in-phase fluctuations and a significant 60–80-year multidecadal variability, apart from a long-term warming trend. The winter EASAT experienced a decreasing trend in the last two decades, which is consistent with the occurrence of extremely cold events in East Asia winters in recent years. The winter NAO leads the detrended winter EASAT by 12–18 years with the greatest significant positive correlation at the lead time of 15 years. Further analysis shows that ENSO may affect winter EASAT interannual variability, but does not affect the robust lead relationship between the winter NAO and EASAT. We present the coupled oceanic-atmospheric bridge (COAB) mechanism of the NAO influences on winter EASAT multidecadal variability through its accumulated delayed effect of ∼15 years on the Atlantic Multidecadal Oscillation (AMO) and Africa–Asia multidecadal teleconnection (AAMT) pattern. An NAO-based linear model for predicting winter decadal EASAT is constructed on the principle of the COAB mechanism, with good hindcast performance. The winter EASAT for 2020–34 is predicted to keep on fluctuating downward until ∼2025, implying a high probability of occurrence of extremely cold events in coming winters in East Asia, followed by a sudden turn towards sharp warming. The predicted 2020/21 winter EASAT is almost the same as the 2019/20 winter.
Từ khóa
Tài liệu tham khảo
Årthun, M., T. Eldevik, E. Viste, H. Drange, T. Furevik, H. L. Johnson, and N. S. Keenlyside, 2017: Skillful prediction of northern climate provided by the ocean. Nature Communications, 8, 15875, https://doi.org/10.1038/ncomms15875.
Chen, J. W., Y. Deng, W. S. Lin, and S. Yang, 2018: A process-based decomposition of decadal-scale surface temperature evolutions over East Asia. Climate Dyn., 51, 4371–4383, https://doi.org/10.1007/s00382-017-3872-x.
Chen, W., X. Q. Lan, L. Wang, and Y. Ma, 2013: The combined effects of the ENSO and the Arctic Oscillation on the winter climate anomalies in East Asia. Chinese Science Bulletin, 58(12), 1355–1362, https://doi.org/10.1007/s11434-012-5654-5.
Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776.
Delworth, T. L., and R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13, 1481–1495, https://doi.org/10.1175/1520-0442(2000)013<1481:MTCVDB>2.0.CO;2.
Delworth, T. L., and F. R. Zeng, 2016: The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic Meridional Overturning Circulation. J. Climate, 29, 941–962, https://doi.org/10.1175/JCLI-D-15-0396.1.
Delworth, T. L., F. R. Zeng, G. A. Vecchi, X. S. Yang, L. P. Zhang, and R. Zhang, 2016: The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nature Geoscience, 9, 509–512, https://doi.org/10.1038/ngeo2738.
Ding, Y. H., and Coauthors, 2007: China’s national assessment report on climate change (I): Climate change in China and the future trend. Advances in Climate Change Research, 3, 1–5.
Ding, Y. H., and Coauthors, 2014: Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change. J. Meteor. Res., 28(5), 693–713, https://doi.org/10.1007/s13351-014-4046-y.
Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 2077–2080, https://doi.org/10.1029/2000GL012745.
Gao, L. H., Z. W. Yan, and X. W. Quan, 2015: Observed and SST-forced multidecadal variability in global land surface air temperature. Climate Dyn., 44, 359–369, https://doi.org/10.1007/s00382-014-2121-9.
Gong, D. Y., S. W. Wang, and J. H. Zhu, 2001: East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 2073–2076, https://doi.org/10.1029/2000GL012311.
Gong, H. N., L. Wang, and W. Chen, 2019: Multidecadal changes in the influence of the Arctic Oscillation on the East Asian surface air temperature in boreal winter. Atmosphere, 10, 757, https://doi.org/10.3390/atmos10120757.
Ha, K.-J., K.-Y. Heo, S.-S. Lee, K.-S. Yun, and J.-G. Jhun, 2012: Variability in the East Asian monsoon: A review. Meteorological Applications, 19(2), 200–215, https://doi.org/10.1002/met.1320.
Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.
Holton, J. R., and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology. 5th ed. Academic Press, 552 pp, https://doi.org/10.1016/C2009-0-63394-8.
Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38(6), 1179–1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.
Hu, Z. Z., and Z. H. Wu, 2004: The intensification and shift of the annual North Atlantic Oscillation in a global warming scenario simulation. Tellus A, 56, 112–124, https://doi.org/10.1111/j.1600-0870.2004.00050.x.
Hu, Z. Z., A. Kumar, B. H. Huang, Y. Xue, W. Q. Wang, and B. Jha, 2011: Persistent atmospheric and oceanic anomalies in the North Atlantic from Summer 2009 to Summer 2010. J. Climate, 24(22), 5812–5830, https://doi.org/10.1175/2011JCLI4213.1.
Hu, Z. Z., A. Kumar, B. Jha, W. Q. Wang, B. H. Huang, and B. Y. Huang, 2012: An analysis of warm pool and cold tongue El Niños: Air-sea coupling processes, global influences, and recent trends. Climate Dyn., 38, 2017–2035, https://doi.org/10.1007/s00382-011-1224-9.
Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676–679, https://doi.org/10.1126/science.269.5224.676.
Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, J. W. Hurrell et al., Eds., AGU, 114, 1–35, https://doi.org/10.1029/134GM01.
Jeong, J. H., and C. H. Ho, 2005: Changes in occurrence of cold surges over East Asia in association with Arctic Oscillation. Geophys. Res. Lett., 32, 85–93, https://doi.org/10.1029/2005GL023024.
Kim, H. J., and J. B. Ahn, 2012: Possible impact of the autumnal North Pacific SST and November AO on the East Asian winter temperature. J. Geophys. Res., 117, D12104, https://doi.org/10.1029/2012JD017527.
Kim, J.-W., S.-W. Yeh, and E.-C. Chang, 2014: Combined effect of El Niño-Southern Oscillation and Pacific decadal oscillation on the East Asian winter monsoon. Climate Dyn., 42(3–4), 957–971, https://doi.org/10.1007/s00382-013-1730-z.
Kim, J.-W., S.-I. An, S.-Y. Jun, H.-J. Park, and S. W. Yeh, 2017: ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacific anticyclone. Climate Dyn., 49(4), 1157–1179, https://doi.org/10.1007/s00382-016-3371-5.
Latif, M., C. Boning, J. Willebrand, A. Biastoch, J. Dengg, N. Keenlyside, U. Schweckendiek, and G. Madec, 2006: Is the thermohaline circulation changing? J. Clim., 19(18), 4631–4637.
Li, C. X., T. B. Zhao, and K. R. Ying, 2016b: Effects of anthropogenic aerosols on temperature changes in China during the twentieth century based on CMIP5 models. Theor. Appl. Climatol., 125, 529–540, https://doi.org/10.1007/s00704-015-1527-6.
Li, J. P., 2005a: Coupled air-sea oscillations and climate variations in China. Climate and Environmental Evolution in China (First Volume), D. H. Qin, Ed., China Meteorological Press, 324–333. (in Chinese)
Li, J. P., 2005b: Physical nature of the Arctic Oscillation and its relationship with East Asian atmospheric circulation. Air-Sea Interaction and its impacts on China Climate, Y. Q. Yu and W. Chen, Eds., China Meteorological Press, 169–176. (in Chinese)
Li, J. P., 2016: Impacts of annular modes on extreme climate events over the East Asian monsoon region. Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events, J. P. Li et al., Eds., Cambridge University Press, 343–353, https://doi.org/10.1017/CBO9781107775541.028.
Li, J. P., and J. X. L. Wang, 2003: A new North Atlantic Oscillation index and its variability. Adv. Atmos. Sci., 20, 661–676, https://doi.org/10.1007/BF02915394.
Li, J. P., and Z. W. Wu., 2012: Importance of autumn Arctic sea ice to northern winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109, E1898, https://doi.org/10.1073/pnas.1205075109.
Li, J. P., C. Sun, and F.-F. Jin, 2013a: NAO implicated as a predictor of Northern Hemisphere mean temperature multi-decadal variability. Geophys. Res. Lett., 40, 5497–5502, https://doi.org/10.1002/2013GL057877.
Li, J. P., C. Sun, and R. Q. Ding, 2018b: A coupled decadal-scale air-sea interaction theory: The NAO-AMO-AMOC coupled mode and its impacts. Global Change and Future Earth-The Geoscience Perspective, T. Beer et al., Eds., Cambridge University Press, 131–143.
Li, J. P., R. Swinbank, R. Grotjahn, and H. Volkert, 2016a: Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events. Cambridge University Press, 370pp.
Li, J. P., F. Zheng, C. Sun, J. Feng, and J. Wang, 2019a: Pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate: A review. Adv. Atmos. Sci., 36, 902–921, https://doi.org/10.1007/s00376-019-8236-5.
Li, J. P., H. H. Hsu, W. C. Wang, K. J. Ha, T. M. Li, and A. Kitoh, 2018a: East Asian climate under global warming: Understanding and projection. Climate Dyn., 51, 3969–3972, https://doi.org/10.1007/s00382-018-4523-6.
Li, J. P., and Coauthors, 2013b: Progress in air-land-sea interactions in Asia and their role in global and Asian climate change. Chinese Journal of Atmospheric Sciences, 37, 518–538, https://doi.org/10.3878/j.issn.1006-9895.2012.12322. (in Chinese with English abstract)
Li, S. L., and G. T. Bates, 2007: Influence of the Atlantic multi-decadal oscillation on the winter climate of East China. Adv. Atmos. Sci., 24, 126–135, https://doi.org/10.1007/s00376-007-0126-6.
Li, X. F., Z. Z. Hu, and B. H. Huang, 2020: Subannual to interannual variabilities of SST in the North Atlantic Ocean. J. Climate, 33(13), 5547–5564, https://doi.org/10.1175/JCLI-D-19-0556.1.
Li, X. X., Z. W. Wu, and Y. J. Li, 2019c: A link of China warming hiatus with the winter sea ice loss in Barents-Kara Seas. Climate Dyn., 53, 2625–2642, https://doi.org/10.1007/s00382-019-04645-z.
Li, Y. J., and J. P. Li, 2012: Propagation of planetary waves in the horizontal non-uniform basic flow. Chinese Journal of Geophysics, 55, 361–371, https://doi.org/10.6038/j.issn.0001-5733.2012.02.001. (in Chinese with English abstract)
Li, Y. J., J. P. Li, F.-F. Jin, and S. Zhao, 2015: Interhemispheric propagation of stationary Rossby waves in a horizontally nonuniform background flow. J. Atmos. Sci., 72, 3233–3256, https://doi.org/10.1175/JAS-D-14-0239.1.
Li, Y. J., J. Feng, J. P. Li, and A. X. Hu, 2019b: Equatorial windows and barriers for stationary Rossby wave propagation. J. Climate, 32, 6117–6135, https://doi.org/10.1175/JCLI-D-18-0722.1.
Liu, T., J. P. Li, and F. Zheng, 2015: Influence of the boreal autumn southern annular mode on winter precipitation over land in the Northern Hemisphere. J. Climate, 28, 8825–8839, https://doi.org/10.1175/JCLI-D-14-00704.1.
Luo, D. H., Y. N. Chen, A. G. Dai, M. Mu, R. H. Zhang, and S. Ian, 2017: Winter Eurasian cooling linked with the Atlantic Multidecadal Oscillation. Environmental Research Letters, 12, 125002, https://doi.org/10.1088/1748-9326/aa8de8.
Luo, F. F., and S. L. Li, 2014: Joint statistical-dynamical approach to decadal prediction of East Asian surface air temperature. Science China Earth Sciences, 57, 3062–3072, https://doi.org/10.1007/s11430-014-4984-3.
Meehl, G. A., and H. Y. Teng, 2014: CMIP5 multi-model hind-casts for the mid-1970s shift and early 2000s hiatus and predictions for 2016–2035. Geophys. Res. Lett., 41, 1711–1716, https://doi.org/10.1002/2014GL059256.
Meehl, G. A., H. Y. Teng, and J. M. Arblaster, 2014: Climate model simulations of the observed early-2000s hiatus of global warming. Nature Climate Change, 4, 898–902, https://doi.org/10.1038/nclimate2357.
Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res.: Atmos., 117, D08101, https://doi.org/10.1029/2011jd017187.
Nigam, S., A. Sengupta, and A. Ruiz-Barradas, 2020: Atlantic-Pacific links in observed multidecadal SST variability: Is the Atlantic Multidecadal Oscillation’s phase reversal orchestrated by the Pacific Decadal Oscillation? J. Climate, 33, 5479–5505, https://doi.org/10.1175/JCLI-D-19-0880.1.
Pyper, B. J., and R. M. Peterman, 1998: Comparison of methods to account for autocorrelation in correlation analyses of fish data. Canadian Journal of Fisheries and Aquatic Sciences, 55, 2127–2140, https://doi.org/10.1139/cjfas-55-12-2710.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.
Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367(6465), 723–726, https://doi.org/10.1038/367723a0.
Stolpe, M. B., I. Medhaug, J. Sedláček, and R. Knutti, 2018: Multi-decadal variability in global surface temperatures related to the Atlantic Meridional Overturning Circulation. J. Climate, 31(7), 2889–2906, https://doi.org/10.1175/JCLI-D-17-0444.1.
Sun, C., and J. P. Li, 2012: Analysis of anomalously low surface air temperature in the Northern Hemisphere during 2009/2010 winter. Climatic and Environmental Research, 17, 259–273, https://doi.org/10.3878/j.issn.1006-9585.2011.10070. (in Chinese with English abstract)
Sun, C., J. P. Li, and F.-F. Jin, 2015: A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Climate Dyn., 45, 2083–2099, https://doi.org/10.1007/s00382-014-2459-z.
Sun, C., J. P. Li, R. Q. Ding, and Z. Jin, 2017a: Cold season Africa-Asia multidecadal teleconnection pattern and its relation to the Atlantic multidecadal variability. Climate Dyn., 48, 3903–3918, https://doi.org/10.1007/s00382-016-3309-y.
Sun, C., J. P. Li, F. Kucharski, J. Q. Xue, and X. Li, 2019: Contrasting spatial structures of Atlantic Multidecadal Oscillation between observations and slab ocean model simulations. Climate Dyn., 52, 1395–1411, https://doi.org/10.1007/s00382-018-4201-8.
Sun, C., F. Kucharski, J. P. Li, F.-F. Jin, I.-S. Kang, and R. Q. Ding, 2017b: Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nature Communications, 8, 15998, https://doi.org/10.1038/ncomms15998.
Sun, J. Q., S. Wu, and J. Ao, 2016: Role of the North Pacific sea surface temperature in the East Asian winter monsoon decadal variability. Climate Dyn., 46, 3793–3805, https://doi.org/10.1007/s00382-015-2805-9.
Trenberth, K. E., and D. A. Paolino, 1980: The Northern Hemisphere sea-level pressure data set: Trends, errors and discontinuities. Mon. Wea. Rev., 108(7), 855–872, https://doi.org/10.1175/1520-0493(1980)108<0855:TNHSLP>2.0.CO;2.
University of East Anglia Climatic Research Unit, I. C. Harris, and P. D. Jones, 2017: CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) version 4.01 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2016). Centre for Environmental Data Analysis, https://doi.org/10.5285/58a8802721c94c66ae45c3baa4d814d0.
von Storch, H., and F. W. Zwiers, 2002: Statistical Analysis in Climate Research. Cambridge University Press, 162 pp.
Wallace, J. M., Y. Zhang, and L. Bajuk, 1996: Interpretation of interdecadal trends in Northern Hemisphere surface air temperature. J. Climate, 9(2), 249–259, https://doi.org/10.1175/1520-0442(1996)009<0249:IOITIN>2.0.CO;2.
Wang, B., Z. W. Wu, C. P. Chang, J. Liu, J. P. Li, and T. J. Zhou, 2010: Another Look at interannual-to-interdecadal variations of the East Asian winter monsoon: the northern and southern temperature modes. J. Climate, 23, 1495–1512, https://doi.org/10.1175/2009JCLI3243.1.
Wang, L., and W. Chen, 2010: Downward Arctic Oscillation signal associated with moderate weak stratospheric polar vortex and the cold December 2009. Geophys. Res. Lett., 37, L09707, https://doi.org/10.1029/2010GL042659.
Wang, L., and W. Chen, 2014a: The East Asian winter monsoon: Re-amplification in the mid-2000s. Chinese Science Bulletin, 59, 430–436, https://doi.org/10.1007/s11434-013-0029-0.
Wang, L., and W. Chen, 2014b: A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. International Journal of Climatology, 34(6), 2059–2078, https://doi.org/10.1002/joc.3822.
Wang, X. F., J. P. Li, C. Sun, and T. Liu, 2017: NAO and its relationship with the Northern Hemisphere mean surface temperature in CMIP5 simulations. J. Geophys. Res.: Atmos., 122(8), 4202–4227, https://doi.org/10.1002/2016JD025979.
Wills, R. C. J., K. C. Armour, D. S. Battisti, and D. L. Hartmann, 2019: Ocean-atmosphere dynamical coupling fundamental to the Atlantic Multidecadal Oscillation. J. Climate., 32, 251–272, https://doi.org/10.1175/JCLI-D-18-0269.1.
Wu, B. Y., and J. Wang, 2002: Winter arctic oscillation, Siberian high and East Asian winter monsoon. Geophys. Res. Lett., 29(19), 1897, https://doi.org/10.1029/2002gl015373.
Wu, B. Y., J. Z. Su, and R. H. Zhang, 2011a: Effects of autumn-winter arctic sea ice on winter Siberian high. Chinese Science Bulletin, 56, 3220–3228, https://doi.org/10.1007/s11434-011-4696-4.
Wu, Z. W., J. Dou, and H. Lin, 2015: Potential influence of the November-December Southern Hemisphere annular mode on the East Asian winter precipitation: A new mechanism. Climate Dyn., 44, 1215–1226, https://doi.org/10.1007/s00382-014-2241-2.
Wu, Z. W., J. P. Li, B. Wang, and X. H. Liu, 2009: Can the Southern Hemisphere annular mode affect China winter monsoon? J. Geophys. Res., 114, D11107, https://doi.org/10.1029/2008JD011501.
Wu, Z. W., J. P. Li, Z. H. Jiang, and J. H. He, 2011b: Predictable climate dynamics of abnormal East Asian winter monsoon: Once-in-a-century snowstorms in 2007/2008 winter. Climate Dyn., 17, 1661–1669, https://doi.org/10.1007/s00382-010-0938-4.
Xie, T. J., J. P. Li, K. Q. Chen, Y. Z. Zhang, and C. Sun, 2021: Origin of Indian Ocean multidecadal climate variability: Role of the North Atlantic Oscillation. Climate Dyn., 56, 3277–3294, https://doi.org/10.1007/s00382-021-05643-w.
Xie, T. J., J. P. Li, C. Sun, R. Q. Ding, K. C. Wang, C. F. Zhao, and J. Feng, 2019: NAO implicated as a predictor of the surface air temperature multidecadal variability over East Asia. Climate Dyn., 53, 895–905, https://doi.org/10.1007/s00382-019-04624-4.
Xing, N., J. P. Li, and L. N. Wang, 2017: Multidecadal trends in large-scale annual mean SATa based on CMIP5 historical simulations and future projections. Engineering, 3, 136–143, https://doi.org/10.1016/J.ENG.2016.04.011.
Xu, Y. D., and Coauthors, 2020: Contribution of SST change to multidecadal global and continental surface air temperature trends between 1910 and 2013. Climate Dyn., 54, 1295–1313, https://doi.org/10.1007/s00382-019-05060-0.
Yin, S., J. Feng, and J. P. Li, 2013: Influences of the preceding winter Northern Hemisphere annular mode on the spring extreme low temperature events in the north of eastern China. Acta Meteorologica Sinica, 71(1), 96–108, https://doi.org/10.11676/qxxb2013.008.(inChinesewithEnglishabstract). (in Chinese with English abstract)
Yu, L. L., Z. W. Wu, R. H. Zhang, and X. Yang, 2018: Partial least regression approach to forecast the East Asian winter monsoon using Eurasian snow cover and sea surface temperature. Climate Dyn., 51(11), 4573–4584, https://doi.org/10.1007/s00382-017-3757-z.
Yun, K.-S., Y.-W. Seo, K.-J. Ha, J.-Y. Lee, and Y. Kajikawa, 2014: Interdecadal changes in the Asian winter monsoon variability and its relationship with ENSO and AO. Asia-Pacific Journal of Atmospheric Sciences, 50(4), 531–540, https://doi.org/10.1007/s13143-014-0042-5.
Zhang, P., Z. W. Wu, and J. P. Li, 2019: Reexamining the relationship of La Niña and the East Asian winter monsoon. Climate Dyn., 53, 779–791, https://doi.org/10.1007/s00382-019-04613-7.
Zhang, P., Z. W. Wu, J. P. Li, and Z. N. Xiao, 2020: Seasonal prediction of the northern and southern temperature modes of the East Asian winter monsoon: The importance of the Arctic sea ice. Climate Dyn., 54, 3583–3597, https://doi.org/10.1007/s00382-020-05182-w.
Zhao, P., P. Jones, L. Cao, Z. Yan, S. Zha, Y. Zhu, Y. Yu, and G. Tang, 2014: Trend of surface air temperature in Eastern China and associated large-scale climate variability over the last 100 years. J. Climate, 27(12), 4693–4703, https://doi.org/10.1175/JCLI-D-13-00397.1.
Zhao, S., J. P. Li, and Y. J. Li, 2015: Dynamics of an interhemispheric teleconnection across the critical latitude through a southerly duct during boreal winter. J. Climate, 28, 7437–7456, https://doi.org/10.1175/JCLI-D-14-00425.1.
Zhao, S., J. P. Li, Y. J. Li, F.-F. Jin, and J. Y. Zheng, 2019: Interhemispheric influence of Indo-Pacific convection oscillation on Southern Hemisphere rainfall through southward propagation of Rossby waves. Climate Dyn., 52, 3203–3221, https://doi.org/10.1007/s00382-018-4324-y.
Zheng, F., J. P. Li, and T. Liu, 2014: Some advances in studies of the climatic impacts of the Southern Hemisphere annular mode. J. Meteor. Res., 28(5), 820–835, https://doi.org/10.1007/s13351-014-4079-2.
Zheng, F., J. P. Li, L. Wang, F. Xie, and X. F. Li, 2015: Cross-seasonal influence of the December–February Southern Hemisphere annular mode on March–May meridional circulation and precipitation. J. Climate, 28, 6859–6881, https://doi.org/10.1175/JCLI-D-14-00515.1.
Zheng, F., and Coauthors, 2021: The 2020/21 extremely cold winter in China influenced by the synergistic effect of La Niña and warm Arctic. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-1033-y
Zuo, B., J. P. Li, C. Sun, and X. Zhou, 2019: A new statistical method for detecting trend turning. Theor. Appl. Climatol., 138, 201–213, https://doi.org/10.1007/s00704-019-02817-9.