Maximum Entropy and Random Forest Modeling of Mineral Potential: Analysis of Gold Prospectivity in the Hezuo–Meiwu District, West Qinling Orogen, China
Tóm tắt
This study tested and compared the mineral potential mapping capabilities of the random forest (RF) and maximum entropy (MaxEnt) algorithms using gold deposit occurrences within the Hezuo–Meiwu district, West Qinling Orogen, China. Eighteen orogenic gold deposits in this district and associated regional exploration datasets were used to construct data-driven predictive models to identify locations prospective for gold mineralization. The 18 orogenic gold deposits used in the modeling can be divided into magmatic-hydrothermal gold deposits and mesothermal gold deposits in terms of metallogenic characteristics and nine evidential maps associated with Au deposit occurrences (i.e., distance to intrusions and faults; Au, As, Ag, Cu, and Sb singularity indices; and principal component scores (PC1 and PC2) based on isometric logratio-transformed geochemical data were selected as inputs to the models). The PC1 represents a primary geochemical signature of tectonic process or their products (i.e., fault system), whereas PC2 represents a secondary geochemical signature. Both RF and MaxEnt models were then used to quantitatively rank the importance and identify the sensitivity of the evidential maps based on their spatial relationships to the known gold deposits in the study area. The two groups of populations in the response curves and marginal effect curves indicate that the mineral potential mapping should be performed by zones in consideration of different metallogenic characteristics of gold deposits. The accuracy of the resulting models was then assessed, and the results of the mineral potential mapping were examined using receiver operating characteristic (ROC) analysis, capture-efficiency curve, and success rate curve. Both mineral potential mapping by zones with RF and MaxEnt models have higher area under the ROC curve (AUC) values than the models performed in the study area and delineate 19% of the study area containing > 88% of the known deposit occurrences. Finally, according to the concentration–area (C-A) thresholds for prospectivity maps, two ternary prospectivity maps were generated for further mineral exploration. The results indicate that the RF and MaxEnt algorithms can be used effectively for mineral potential mapping and represent machine learning algorithms that can be used in areas with a few known mineral occurrences.
Tài liệu tham khảo
Abedi, M., Norouzi, G. H., & Bahroudi, A. (2012). Support vector machine for multi-classification of mineral prospectivity areas. Computers and Geosciences, 46(3), 272–283.
Agterberg, F. P. (2007). Mixtures of multiplicative cascade models in geochemistry. Nonlinear Processes in Geophysics, 14(3), 201–209.
Agterberg, F. P., & Bonham-Carter, G. F. (2005). Measuring the performance of mineral-potential maps. Natural Resources Research, 14(1), 1–17.
Aitchison, J. (1982). The statistical analysis of compositional data. Technometrics, 30(1), 120–121.
Aitchison, J., Barcelóvidal, C., Martín-Fernández, J. A., & Pawlowsky-Glahn, V. (2000). Logratio analysis and compositional distance. Mathematical Geology, 32(3), 271–275.
Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists-modeling with GIS. Computer Methods in the Geoscientists, 13, 398.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Breiman, L. (2017). Classification and regression trees. New York: Routledge.
Breslow, N. E., & Cain, K. C. (1988). Logistic regression for two-stage case-control data. Biometrika, 75(1), 11–20.
Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: a new method for mineral prospectivity mapping. Australian Journal of Earth Sciences, 47(4), 757–770.
Buccianti, A. (2013). Is compositional data analysis a way to see beyond the illusion? Computers and Geosciences, 50(1), 165–173.
Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS (Vol. 11). Amsterdam: Elsevier.
Carranza, E. J. M. (2009). Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Computers and Geosciences, 35(10), 2032–2046.
Carranza, E. J. M. (2010). Improved wildcat modelling of mineral prospectivity. Resource Geology, 60(2), 129–149.
Carranza, E. J. M. (2011). Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. Journal of Geochemical Exploration, 110(2), 167–185.
Carranza, E. J. M., & Laborte, A. G. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geology Reviews, 71, 777–787.
Carranza, E. J. M., & Laborte, A. G. (2015b). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers and Geosciences, 74, 60–70.
Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: a case study in Catanduanes Island (Philippines). Natural Resources Research, 25(1), 35–50.
Chen, Y. J., & Santosh, M. (2014). Triassic tectonics and mineral systems in the Qinling Orogen, central China. Geological Journal, 49(4–5), 338–358.
Chen, Y. J., Zhang, J., Zhang, F. X., Pirajno, F., & Li, C. (2004). Carlin and Carlin-like gold deposits in Western Qinling Mountains and their metallogenic time, tectonic setting and model. Geological Review, 50(2), 134–152.
Cheng, Q. (1999). Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical Exploration, 65(3), 175–194.
Cheng, Q. (2000). GeoDAS Phase I: User’s guide and exercise manual (p. 298). York University, Toronto, (Unpublished notes).
Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1–2), 314–324.
Chung, C. J. F., & Fabbri, A. G. (1999). Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering and Remote Sensing, 65(12), 1389–1399.
Cox, D. P., & Singer, D. A. (1986). Mineral deposit models (Vol. 1693). Washington: US Government Printing Office.
Cutler, D. R., Edwards, T. C., Jr., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., et al. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783–2792.
Dong, Y., Zhang, G., Neubauer, F., Liu, X., Genser, J., & Hauzenberger, C. (2011). Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41(3), 213–237.
Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barcelo-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3), 279–300.
Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802–813.
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57.
Filzmoser, P., & Hron, K. (2008). Outlier detection for compositional data using robust methods. Mathematical Geosciences, 40(3), 233–248.
Filzmoser, P., Hron, K., & Reimann, C. (2009). Principal component analysis for compositional data with outliers. Environmetrics: The Official Journal of the International Environmetrics Society, 20(6), 621–632.
Filzmoser, P., Hron, K., & Reimann, C. (2010). The bivariate statistical analysis of environmental (compositional) data. Science of the Total Environment, 408(19), 4230–4238.
Gao, Y., Zhang, Z., Xiong, Y., & Zuo, R. (2016). Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews, 75, 16–28.
Goldfarb, R., Baker, T., Dube, B., Groves, D. I., Hart, C. J., & Gosselin, P. (2005). Distribution, character and genesis of gold deposits in metamorphic terranes. Society of Economic Geologists.
Grömping, U. (2009). Variable importance assessment in regression: Linear regression versus random forest. The American Statistician, 63(4), 308–319.
Guo, X., Yan, Z., Wang, Z., Wang, T., Hou, K., Fu, C., et al. (2012). Middle Triassic arc magmatism along the northeastern margin of the Tibet: U-Pb and Lu–Hf zircon characterization of the Gangcha complex in the West Qinling terrane, central China. Journal of the Geological Society, 169(3), 327–336.
Hariharan, S., Tirodkar, S., Porwal, A., Bhattacharya, A., & Joly, A. (2017). Random forest-based prospectivity modelling of greenfield terrains using sparse deposit data: An example from the Tanami region, Western Australia. Natural Resources Research, 26(4), 489–507.
Hronsky, J. M., & Groves, D. I. (2008). Science of targeting: definition, strategies, targeting and performance measurement. Australian Journal of Earth Sciences, 55(1), 3–12.
Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620.
Joly, A., Porwal, A., & McCuaig, T. C. (2012). Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: Mineral system analysis, targeting model and prospectivity analysis. Ore Geology Reviews, 48, 349–383.
King, G., & Zeng, L. (2001). Logistic regression in rare events data. Political Analysis, 9(2), 137–163.
Knox-Robinson, C. M., & Wyborn, L. A. I. (1997). Towards a holistic exploration strategy: Using geographic information systems as a tool to enhance exploration. Australian Journal of Earth Sciences, 44(4), 453–463.
Kröner, A., Zhang, G. W., & Sun, Y. (1993). Granulites in the Tongbai area, Qinling belt, China: Geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia. Tectonics, 12(1), 245–255.
Lee, S., & Dan, N. T. (2005). Probabilistic landslide susceptibility mapping in the Lai Chau province of Vietnam: Focus on the relationship between tectonic fractures and landslides. Environmental Geology, 48(6), 778–787.
Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33–41.
Lerch, M. F., Xue, F., Kröner, A., Zhang, G. W., & Tod, W. (1995). A middle Silurian-Early Devonian magmatic arc in the Qinling Mountains of central China. The Journal of Geology, 103(4), 437–449.
Lewkowski, C., Porwal, A., & González-Álvarez, I. (2010). Genetic programming applied to base-metal prospectivity mapping in the Aravalli Province, India. In EGU general assembly conference abstracts (Vol. 12, p. 523).
Li, X. W., Mo, X. X., Yu, X. H., Ding, Y., Huang, X. F., Wei, P., et al. (2013). Petrology and geochemistry of the early Mesozoic pyroxene andesites in the Maixiu Area, West Qinling, China: Products of subduction or syn-collision? Lithos, 172, 158–174.
Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.
Liu, X. L. (2011). A study on the geology feature and minerals exploration sign of structure-metamorphosis-type gold-bearing deposit in Gansu-Xiahe-Hezuo region. Gansu Metallurgy, 2, 33.
Liu, Y., Zhou, K., & Xia, Q. (2018). A MaxEnt model for mineral prospectivity mapping. Natural Resources Research, 27(3), 299–313.
Liu, Y., Zhou, K., Zhang, N., & Wang, J. (2017). Maximum entropy modeling for orogenic gold prospectivity mapping in the Tangbale-Hatu belt, western Junggar, China. Ore Geology Reviews, 100, 133–147.
Mao, J., Qiu, Y., Goldfarb, R. J., Zhang, Z., Garwin, S., & Fengshou, R. (2002). Geology, distribution, and classification of gold deposits in the western Qinling belt, central China. Mineralium Deposita, 37(3–4), 352–377.
McCuaig, T. C., Beresford, S., & Hronsky, J. (2010). Translating the mineral systems approach into an effective exploration targeting system. Ore Geology Reviews, 38(3), 128–138.
McCuaig, T. C., & Hronsky, J. M. (2014). The mineral system concept: the key to exploration targeting. Society of Economic Geologists Special Publication, 18, 153–175.
McCuaig, T. C., Kreuzer, O. P., & Brown, W. M. (2007). Fooling ourselves—dealing with model uncertainty in a mineral systems approach to exploration. In Mineral exploration and research: Digging deeper: Proceedings of the 9th biennial SGA Meeting, Dublin (pp. 1435–1438).
McCune, B., Grace, J. B., & Urban, D. L. (2002). Analysis of ecological communities. Gleneden Beach (p. 302).
McKay, G., & Harris, J. R. (2016). Comparison of the data-driven Random Forests model and a knowledge-driven method for mineral prospectivity mapping: a case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research, 25(2), 125–143.
Meng, Q. R., & Zhang, G. W. (2000). Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323(3–4), 183–196.
Oh, H. J., & Lee, S. (2010). Application of artificial neural network for gold–silver deposits potential mapping: a case study of Korea. Natural Resources Research, 19(2), 103–124.
Otero, N., Tolosana-Delgado, R., Soler, A., Pawlowsky-Glahn, V., & Canals, A. (2005). Relative versus absolute statistical analysis of compositions: A comparative study of surface waters of a Mediterranean river. Water Research, 39(7), 1404–1414.
Pawlowsky-Glahn, V., & Egozcue, J. J. (2006). Compositional data and their analysis: An introduction. Geological Society, London, Special Publications, 264(1), 1–10.
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259.
Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–175.
Porwal, A., & Carranza, E. J. M. (2015). Introduction to the special issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Ore Geology Reviews, 71, 477–483.
Porwal, A., Carranza, E. J. M., & Hale, M. (2003). Artificial neural networks for mineral-potential mapping: A case study from Aravalli Province, Western India. Natural Resources Research, 12(3), 155–171.
Porwal, A. K., & Kreuzer, O. P. (2010). Introduction to the special issue: Mineral prospectivity analysis and quantitative resource estimation.
Qi, J. H., Li, Z. C., & Wang, X. W. (2013). Report on the prospect survey of mines in Hezuo–Meiwu district. Gansu: Third institute geological and mineral exploration of Gansu provincial bureau of geology and mineral resources, Gansu, China, (p. 155). (in Chinese).
R Development Core Team. (2008). The R project for statistical computing. http://www.R-project.org. Accessed 28 Oct 2018.
Rodriguez-Galiano, V. F., Chica-Olmo, M., & Chica-Rivas, M. (2014). Predictive modelling of gold potential with the integration of multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. International Journal of Geographical Information Science, 28(7), 1336–1354.
Schill, W., Jöckel, K. H., Drescher, K., & Timm, J. (1993). Logistic analysis in case-control studies under validation sampling. Biometrika, 80(2), 339–352.
Sillitoe, R. H. (2004). Musings on future exploration targets and strategies in the Andes. Andean metallogeny: New discoveries, concepts, and updates. Society of Economic Geologists, Boulder (pp. 1–14).
Sillitoe, R. H., & Thompson, J. F. H. (2006). Changes in mineral exploration practice: Consequences for discovery. Special Publication-Society of Economic Geologists, 12, 193.
Simmons, S. F., White, N. C., & John, D. A. (2005). Geological characteristics of epithermal precious and base metal deposits. Economic Geology, 100, 485–522.
Sui, J. X., Li, J. W., Wen, G., & Jin, X. Y. (2017). The Dewulu reduced Au–Cu skarn deposit in the Xiahe-Hezuo district, West Qinling orogen, China: Implications for an intrusion-related gold system. Ore Geology Reviews, 80, 1230–1244.
Wang, W., Zhao, J., Cheng, Q., & Carranza, E. J. M. (2015). GIS-based mineral potential modeling by advanced spatial analytical methods in the southeastern Yunnan mineral district, China. Ore Geology Reviews, 71, 735–748.
Wyborn, L. A. I., Heinrich, C. A., & Jaques, A. L. (1994). Australian Proterozoic mineral systems: Essential ingredients and mappable criteria. In Proceedings of the AusIMM annual conference (vol. 1994, pp. 109–115), Darwin, AusIMM.
Yousefi, M., & Nykänen, V. (2017). Introduction to the special issue: GIS-based mineral potential targeting.
Zhang, G., Dong, Y., Lai, S., Guo, A. L., Meng, Q. R., Liu, S. F., et al. (2004). Mianlue tectonic zone and Mianlue suture zone on southern margin of Qinling–Dabie orogenic belt. Science in China Series D Earth Sciences-English Edition, 47(4), 300–316.
Zhang, C. L., Wang, T., & Wang, X. X. (2008). Origin and tectonic setting of the Early Mesozoic granitoids in Qinling orogenic belt. Geological Journal of China Universities, 14(3), 304–316.
Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences, 59, 556–572.
Zuo, R. (2014). Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China. Journal of Geochemical Exploration, 139, 170–176.
Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral prospectivity. Computers and Geosciences, 37(12), 1967–1975.