A relation between the Akaike criterion and reliability of parameter estimates, with application to nonlinear autoregressive modelling of ictal EEG

Springer Science and Business Media LLC - Tập 20 - Trang 167-180 - 1992
Jonathan D. Victor1,2, Annemarie Canel1
1Department of Neurology and Neuroscience, The New York Hospital-Cornell Medical Center, New York
2The Rockefeller University, New York

Tóm tắt

The Akaike minimum information criterion provides a means to determine the appropriate number of lags in a linear autoregressive model of a time series. We show that the Akaike criterion is closely related to the reliability estimates of successively determined parameters of a linear autoregressive (LAR) model. A similar criterion may be applied to determine whether the addition of a nonlinear term to an LAR model provides a statistically significant improvement in the description of the time series. As an example, we use this method to identify quadratic contributions to a nonlinear autoregressive characterization of a typical 3/s spike and wave seizure discharge.

Tài liệu tham khảo

Akaike, H. A new look at the statistical model identification. IEEE Trans. Auto. Control AC-19:716–723; 1974. Babloyantz, A.; Destexhe, A. Low-dimensional chaos in an instance of epilepsy. Proc. Natl. Acad. Sci. 83:3513; 1986. Billings, S.A.; Chen, S. Identification of nonlinear rational systems using a prediction-error estimation algorithm. Int. J. Syst. Sci. 20:467–494; 1989. Box, G.E.P.; Jenkins, G.M. Time series analysis: Forecasting and control. San Francisco: Holden-Day; 1976. Dewald, L.S.; Lewis, P.A.W. A new Laplace second-order autoregressive time-series model-NLAR(2) IEEE Trans. Information Theory IT-31:645–651; 1985. Elul, R. Gaussian behavior of the electroencephalogram: Changes during performance of mental task. Science 164:328–331; 1969. Gersh, W.; Yonemoto, J. Parametric time series models for multivariate EEG analysis. Comp. Biomed. Res. 10:113–125; 1977. Kawahara, T. Coupled Van der Pol oscillators—A model of excitatory and inhibitory neural interactions. Biol. Cybern. 39:37–43; 1980. Korenberg, M.J. Cross-correlation analysis of neural cascades. Proc. 10th Ann. Rocky Mountain Bioeng. Symp., 47–51; 1973. Korenberg, M. Orthogonal identification of nonlinear difference equation models. Proc. 28th Midwest Symp. Circuit Syst. 1:90–95; 1985. Korenberg, M. Functional expansions, parallel cascades, and nonlinear difference equations. In Marmarelis, V.Z., ed. Advanced methods of physiological system modelling, Vol. 1. Los Angeles: University of Southern California; 1987: pp. 221–240. Korenberg, M. Exact orthogonal estimation of kernels with biological applications. Proc. IEEE Conf. Biomed. Technol. 27–30; 1987. Korenberg, M. Fast orthogonal algorithms for nonlinear system identification and time-series analysis. In: Marmarelis, V.Z., ed. Advanced methods of physiological system modelling, Vol. 2, New York: Plenum Press; 1989:pp. 160–177. Leontaritis, I.J.; Billings, S.A. Input-output parametric models for non-linear systems. I. Deterministic non-linear systems. Int. J. Control 41:303–328; 1985. Leontaritis, I.J.; Billings, S.A. Input-output parametric models for non-linear systems. II. Stochastic non-linear systems. Int. J. Control 41:329–344; 1985. Leontaritis, I.J.; Billings, S.A. Model selection and validation methods for non-linear systems. Int. J. Control 45:311–341; 1987. Lopes da Silva, F.H.; Hoeks, A.; Smits, H.; Zetterberg, L.H. Model of brain rhythmic activity: The alpha-rhythm of the thalamus. Kybernetik 15:27–37; 1974. Lopes da Silva, F.H.; van Lierop, T.H.M.T.; Schrijer, C.F.; Storm van Leeuwen, W. Organization of thalamic and cortical alpha rhythms: Spectra and coherences. Electroencephalog. Clin. Neurophysiol. 35:627–639; 1973. Marmarelis, P.Z.; Marmarelis, V.Z. Analysis of physiological systems: The white-noise approach. New York: Plenum Press; 1978. Niedermeyer, E. Epileptic seizure disorders. In: Niedermeyer, E.; Lopes da Silva, F., eds. Electroencephalography: Basic principles, clinical applications, and related fields. Baltimore: Urban and Schwartzenberg; 1983:pp. 339–428. Saltzberg, B.; Burton, W.D., Jr. Nonlinear filters for tracking chaos in neurobiological time series. In: Marmarelis, V.Z., ed. Advanced methods of physiological system modelling, New York: Plenum Press; 1989:pp. 201–213. Siegel, A. Stochastic aspects of the generation of the electroencephalogram. J. Theor. Biol. 92:317–339; 1981. Storm van Leeuwen, W. The alpha rhythm In: Cobb, W.A.; Van Duijn, H., eds. Contemporary clinical neurophysiology (EEG suppl. No. 34). Amsterdam: Elsevier; 1978:pp. 1–7. Tong, H. Threshold models in non-linear time series analysis. Lecture notes in statistics, vol. 21. D. Brillingeret al.. eds. New York: Springer-Verlag; 1983. Wilson, H.R.; Cowan, J.D. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:55–80; 1973. Wright, J.J.; Kydd, R.R.; Lees, G.J. State-changes in the brain viewed as linear steady-states and nonlinear transititions between steady-states. Biol Cybern. 53:11–17; 1985. Yule, G.U. On a method of investigating periodicities in disturbed series with special reference to Wolfer's sunspot numbers. Phil. Trans. Roy. Soc. Lond. A 226:267–298; 1927.