An improved Morse index bound of min–max minimal hypersurfaces

Springer Science and Business Media LLC - Tập 62 - Trang 1-32 - 2023
Yangyang Li1
1Department of Mathematics, Princeton University, Princeton, USA

Tóm tắt

In this paper, we give an improved Morse index upper bound for minimal hypersurfaces from Almgren–Pitts min–max construction in any closed Riemannian manifold $$M^{n+1}$$ $$(n+1 \ge 3$$ ), which generalizes a result by Zhou (Ann Math 192(3):767–820, 2020) for $$3 \le n+1 \le 7$$ . The novel techniques are the construction of hierarchical deformations and a restrictive min–max theory. These techniques do not rely on bumpy metrics, and thus could be adapted to many other min–max settings.

Tài liệu tham khảo

Almgren, F.J., Jr.: The homotopy groups of the integral cycle groups. Topol. Int. J. Math. 1, 257–299 (1962). https://doi.org/10.1016/0040-9383(62)90016-2 Almgren, F.J.: The Theory of Varifolds: A Variational Calculus in the Large for the k-Dimensional Area Integrand. Institute for Advanced Study, Princeton (1965) Pitts, J.T.: Existence and Regularity of Minimal Surfaces on Riemannian Manifolds. Mathematical Notes, vol. 27, p. 330. Princeton University Press, Princeton,; University of Tokyo Press, Tokyo (1981) Schoen, R., Simon, L.: Regularity of stable minimal hypersurfaces. Commun. Pure Appl. Math. 34(6), 741–797 (1981). https://doi.org/10.1002/cpa.3160340603 Marques, F.C., Neves, A.: The min–max theory and the Willmore conjecture. Ann. Math. 179(2), 683–782 (2014). https://doi.org/10.4007/annals.2014.179.2.6 Marques, F.C., Neves, A.: Morse index and multiplicity of min–max minimal hypersurfaces. Camb. J. Math. 4(4), 463–511 (2016). https://doi.org/10.4310/CJM.2016.v4.n4.a2 Marques, F.C., Neves, A.: Existence of infinitely many minimal hypersurfaces in positive Ricci curvature. Invent. Math. 209(2), 577–616 (2017). https://doi.org/10.1007/s00222-017-0716-6 Marques, F.C., Neves, A.: Morse index of multiplicity one min–max minimal hypersurfaces. Adv. Math. 378, 107527 (2021). https://doi.org/10.1016/j.aim.2020.107527 Irie, K., Marques, F.C., Neves, A.: Density of minimal hypersurfaces for generic metrics. Ann. Math. 187(3), 963–972 (2018). https://doi.org/10.4007/annals.2018.187.3.8 Li, Y.: Existence of infinitely many minimal hypersurfaces in higher-dimensional closed manifolds with generic metrics. arXiv:1901.08440 [math], to appear in JDG (2019) Liokumovich, Y., Marques, F.C., Neves, A.: Weyl law for the volume spectrum. Ann. Math. 187(3), 933–961 (2018). https://doi.org/10.4007/annals.2018.187.3.7 Marques, F.C., Neves, A., Song, A.: Equidistribution of minimal hypersurfaces for generic metrics. Invent. Math. 216(2), 421–443 (2019). https://doi.org/10.1007/s00222-018-00850-5 Song, A.: Existence of infinitely many minimal hypersurfaces in closed manifolds. arXiv:1806.08816 [math] (2018) Zhou, X.: On the multiplicity one conjecture in min–max theory. Ann. Math. 192(3), 767–820 (2020). https://doi.org/10.4007/annals.2020.192.3.3 Sharp, B.: Compactness of minimal hypersurfaces with bounded index. J. Differ. Geom. 106(2), 317–339 (2017). https://doi.org/10.4310/jdg/1497405628 White, B.: The space of minimal submanifolds for varying Riemannian metrics. Indiana Univ. Math. J. 40(1), 161–200 (1991). https://doi.org/10.1512/iumj.1991.40.40008 Song, A.: A dichotomy for minimal hypersurfaces in manifolds thick at infinity. arXiv:1902.06767 [math] (2019). https://doi.org/10.48550/arXiv.1902.06767 Dey, A.: A comparison of the Almgren–Pitts and the Allen–Cahn min–max theory. arXiv:2004.05120 [math] (2020). https://doi.org/10.1007/s00039-022-00610-x Gaspar, P.: The second inner variation of energy and the Morse index of limit interfaces. J. Geom. Anal. 30(1), 69–85 (2020). https://doi.org/10.1007/s12220-018-00134-7 Ramírez-Luna, A.: Orientability of min–max hypersurfaces in manifolds of positive Ricci curvature. arXiv:1907.12519 [math] (2019) Bellettini, C.: Multiplicity-1 minmax minimal hypersurfaces in manifolds with positive Ricci curvature. arXiv:2004.10112 [math] (2020) Marques, F.C., Neves, A.: Topology of the space of cycles and existence of minimal varieties. Surv. Differ. Geom. 21(1), 165–177 (2016). https://doi.org/10.4310/SDG.2016.v21.n1.a5 Gromov, M.: Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. GAFA 13(1), 178–215 (2003). https://doi.org/10.1007/s000390300004 Guth, L.: Minimax problems related to cup powers and Steenrod squares. Geom. Funct. Anal. 18(6), 1917–1987 (2009). https://doi.org/10.1007/s00039-009-0710-2 Zhou, X., Zhu, J.J.: Min–max theory for constant mean curvature hypersurfaces. Invent. Math. 218(2), 441–490 (2019). https://doi.org/10.1007/s00222-019-00886-1 Zhou, X., Zhu, J.: Existence of hypersurfaces with prescribed mean curvature I—generic min–max. Camb. J. Math. 8(2), 311–362 (2020). https://doi.org/10.4310/CJM.2020.v8.n2.a2 Dey, A.: Existence of multiple closed CMC hypersurfaces with small mean curvature. arXiv:1910.00989 [math] (2019) Marques, F.C., Montezuma, R., Neves, A.: Morse inequalities for the area functional. arXiv:2003.01301 [math] (2020). https://doi.org/10.4310/jdg/1685121320 Dey, A.: Compactness of certain class of singular minimal hypersurfaces. Calc. Var. Partial. Differ. Equ. 61(1), 24 (2021). https://doi.org/10.1007/s00526-021-02136-w Bellettini, C., Chodosh, O., Wickramasekera, N.: Curvature estimates and sheeting theorems for weakly stable CMC hypersurfaces. Adv. Math. 352, 133–157 (2019). https://doi.org/10.1016/j.aim.2019.05.023