Performance evaluation of metalworking fluids based on microorganisms
Tóm tắt
Từ khóa
Tài liệu tham khảo
Howes TD (1990) Assessment of the cooling and lubricative properties of grinding fluids. Ann CIRP 39(1):313–316
Brinksmeier E, Meyer D, Huesmann-Cordes AG, Herrmann C (2015) Metalworking fluids—mechanisms and performance. Ann CIRP 64:605–628
Cheng C, Phipps D, Alkhaddar RM (2005) Treatment of spent metalworking fluids. Water Res 39:4051–4063
Koch T, Rabenstein A (2012) Metalworking fluids microbiology: new developments for monitoring and surveillance. 18th International Colloquium Tribology. Ed. Bartz WJ, Esslingen, Jan 10th–12th
Brinksmeier E, Lucca DA, Walter A (2004) Chemical aspects of machining processes. Ann CIRP 53(2):685–699
Northcott WH (1876) A treatise on lathes and turning. Longmans, Green, and Co, London, pp 137–138
Thompson IP, van der Gast CJ (2010) The microbiology of metalworking fluids. In: Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 2370–2376
Van der Gast CJ, Knowles CJ, Wright MA, Thompson IP (2001) Identification and characterization of bacterial populations of an in-use metal-working fluid by phenotypic and genotypic methodology. Int Biodeterior Biodegrad 47:113–123
Koch T, Rabenstein A, Treccani L, Rezwan K, Brinksmeier E (2009) Einfluss mikrobieller Lasten auf wassergemischte Kühlschmierstoffe und das Zerspanergebnis 50. Tribol Fachtagung, September 21st–23rd, Göttingen, pp 28/1–28/20
Rabenstein A, Koch T, Remesch M, Brinksmeier E, Kueber J (2009) Microbial degradation of water miscible metal working fluids. Int Biodeterior Biodegrad 63:1023–1029
Deutsche Gesetzliche Unfallversicherung (2010) Physikalische Methoden zur Reduzierung der mikrobiellen Besiedlung in wassergemischten Kühlschmierstoffen. Fachauschuss-Informationsblatt Nr. 044, 03/2010
Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860
Präve P (1977) Die nutzung des mikrobiellen lebensraums—moderne entwicklung biologischer technologien. Angew Chem 89:211–219
Poleto L, Souza P et al (2016) Selection and identification of microorganisms present in the treatment of wastewater and activated sludge to produce biohydrogen from glycerol. Int J Hydrog Energy 41:4374–4381
Redetzky M, Rabenstein A, Seidel B, Brinksmeier E, Wilhelm H (2015) The influence of cell counts, cell size, EPS and microbial inclusions on the lubrication properties of microorganisms. Prod Eng Res Devel 9:149–159
Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64
Angelini TE, Roper M, Kolter R, Weitz DA, Brenner MP (2009) Bacillus subtilis spreads by surfing on waves of surfactant. Proc Natl Acad Sci 106(43):18109–18113
Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (2010) Classification of prokaryotes (bacteria and archaea) into risk groups. TRBA 466, http://www.baua.de/en
Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidlipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31(3):488–494
Persson A, Österberg E, Dostalek M (1988) Biosurfactant production by Pseudomonas fluorescens 378: growth and product characteristics. Appl Microbiol Biotech 29:1–4
Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654
Cirigliano MC, Carman GM (1984) Isolation of a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 48(4):747–750
Cirigliano MC, Carman GM (1985) Purification and characterization of liposan, a bioemulsifier from candida lipoytica. Appl Environ Microbiol 50/4:846–850
Cameron DR, Cooper DG, Neufeld RJ (1988) The mannoprotein of saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol 54/6:1420–1425
Lang S, Trowitzsch-Kienast W (1994) Biotenside. Teubner BG Stuttgart Leipzig Wiesbaden
Borchert S, Stachelhaus T, Marahiel MA (1994) Induction of surfactin production in Bacillus subtilis by gsp, a gene located upstream of gramicidin s operon in bacillus brevis. J Bacteriol 176(8):2458–2462
Peng F, Liu Z, Wang L, Shao Z (2007) An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol 102:1603–1611
Navon-Venezia S et al (1995) Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol 61(9):3240–3244
Kämpfer P, Jäckel U, Lodder N (2007) Kurzbericht des Forschungsprojektes “Untersuchung des bakteriellen Diversität in wassergemischten Kühlschmierstoffen” Teil I, Institut für angewandte Mikrobiologie der Justus-Liebig-Universität Gießen
Ivshina MS, Kuyukina MS, Philp JC, Christofi N (1998) Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species. World J Microbiol Biotechnol 14:711–717
SITA process solutions (2015) Bubble pressure method for measuring the dynamic surface tension. http://www.sita-process.com . Accessed 16 June 2016
Redetzky M, Rabenstein A, Seidel B, Brinksmeier E, Wilhelm H (2015) The influence of cell counts, cell size, EPS and microbial inclusions on the lubricating properties of microorganisms. Prod Eng Res Devel 9:149–159
Meyer D, Wagner A (2016) Influence of metalworking fluid additives on the thermal conditions in grinding. CIRP Ann Manufac Technol, 65:313–316
Glasse B, Assenhaimer C, Guardani R, Fritsching U (2014) Turbidimetry for the stability evaluation of emulsions used in machining industry. Can J Chem Eng 92:324–329