Transactivation domain of Adenovirus Early Region 1A (E1A): Investigating folding dynamics and aggregation
Tài liệu tham khảo
Ahmed, 2018, Network biology discovers pathogen contact points in host protein-protein interactomes, Nat. Commun., 9, 1, 10.1038/s41467-018-04632-8
Arai, 2015, Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding, Proc. Natl. Acad. Sci. U. S. A, 112, 9614, 10.1073/pnas.1512799112
Ashraf, 2014, Protein misfolding and aggregation in alzheimer's disease and type 2 diabetes mellitus, CNS Neurol. Disord. - Drug Targets, 13, 1280, 10.2174/1871527313666140917095514
Avvakumov, 2002, Comparative sequence analysis of the largest E1A proteins of human and simian adenoviruses, J. Virol., 76, 7968, 10.1128/JVI.76.16.7968-7975.2002
Biancalana, 2010, Molecular mechanism of Thioflavin-T binding to amyloid fibrils, Biochim. Biophys. Acta Protein Proteonomics, 1405, 10.1016/j.bbapap.2010.04.001
Biswas, 2018, Mixed macromolecular crowding: a protein and solvent perspective, ACS Omega, 3, 4316, 10.1021/acsomega.7b01864
Bojadzic, 2018, Toward small-molecule inhibition of protein-protein interactions: general aspects and recent progress in targeting costimulatory and coinhibitory (Immune Checkpoint) interactions HHS public access, Curr. Top. Med. Chem., 18, 674, 10.2174/1568026618666180531092503
Bowers, 2006, 43
Broglia, 1998, Folding and aggregation of designed proteins, Proc. Natl. Acad. Sci. U. S. A, 95, 12930, 10.1073/pnas.95.22.12930
C, 2017, Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation, R. Soc. Open Sci., 4
Camilloni, 2016, Towards a structural biology of the hydrophobic effect in protein folding, Sci. Rep., 6, 28285, 10.1038/srep28285
Colomer, 2017, Hexafluoroisopropanol as a highly versatile solvent, Nat. Rev. Chem., 1, 1, 10.1038/s41570-017-0088
Culik, 2014, Experimental validation of the role of trifluoroethanol as a nanocrowder, J. Phys. Chem. B, 118, 11455, 10.1021/jp508056w
De Guzman, 2000, Solution structure of the TAZ2 (CH3) domain of the transcriptional adaptor protein CBP, J. Mol. Biol., 303, 243, 10.1006/jmbi.2000.4141
Dosztányi, 2009, ANCHOR: web server for predicting protein binding regions in disordered proteins, Bioinformatics, 25, 2745, 10.1093/bioinformatics/btp518
Ferreon, 2009, Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein, Proc. Natl. Acad. Sci. U. S. A, 106, 13260, 10.1073/pnas.0906770106
Frisch, 2002, Adenovirus-5 E1A: paradox and paradigm, Nat. Rev. Mol. Cell Biol., 3, 441, 10.1038/nrm827
Gadhave, 2020, Amyloid formation by intrinsically disordered trans-activation domain of cMyb, Biochem. Biophys. Res. Commun., 524, 446, 10.1016/j.bbrc.2020.01.110
Gadhave, 2021, P53 TAD2 domain (38-61) forms amyloid-like aggregates in isolation, bioRxiv, 2021
Giri, 2013, Structure of the transition state for the binding of c-Myb and KIX highlights an unexpected order for a disordered system, Proc. Natl. Acad. Sci. U. S. A, 110, 14942, 10.1073/pnas.1307337110
Glover, 2016, Identifying intrinsically disordered protein regions likely to undergo binding-induced helical transitions, Biochim. Biophys. Acta Protein Proteonomics, 1864, 1455, 10.1016/j.bbapap.2016.05.005
Gopinath, 2014, Effect of aqueous ethanol on the triple helical structure of collagen, Eur. Biophys. J., 43, 643, 10.1007/s00249-014-0994-5
Huang, 2012, Effects of ethanol on conformational changes of akt studied by chemical cross-linking, mass spectrometry, and 18O labeling, ACS Chem. Biol., 7, 387, 10.1021/cb2003237
Iešmantavičius, 2014, Helical propensity in an intrinsically disordered protein accelerates ligand binding, Angew. Chem. Int. Ed., 53, 1548, 10.1002/anie.201307712
Jones, 2015, DISOPRED3: precise disordered region predictions with annotated protein-binding activity, Bioinformatics, 31, 857, 10.1093/bioinformatics/btu744
Kim, 2004, Immunization of Alzheimer model mice with adenovirus vectors encoding amyloid β-protein and GM-CSF reduces amyloid load in the brain, Neurosci. Lett., 370, 218, 10.1016/j.neulet.2004.08.059
King, 2018, Hacking the cell: network intrusion and exploitation by adenovirus E1A, mBio, 9, 10.1128/mBio.00390-18
Kulkarni, 2019, Intrinsically disordered proteins in chronic diseases, Biomolecules, 9, 147, 10.3390/biom9040147
Kumar, 2020, Folding and structural polymorphism of p53 C-terminal domain: one peptide with many conformations, Arch, Biochem. Biophys., 684, 10.1016/j.abb.2020.108342
Kumar, 2021, SARS-CoV-2 NSP1 C-terminal (residues 131–180) is an intrinsically disordered region in isolation, Curr. Res. Virol. Sci., 2, 100007, 10.1016/j.crviro.2021.100007
Kumar, 2021, Experiments and simulation on ZIKV NS2B-NS3 protease reveal its complex folding, Virology, 556, 110, 10.1016/j.virol.2021.01.014
Kuznetsova, 2014, What macromolecular crowding can do to a protein, Int. J. Mol. Sci., 15, 23090, 10.3390/ijms151223090
Lin, 2011, Speed limit of protein folding evidenced in secondary structure dynamics, Proc. Natl. Acad. Sci., 108, 16622, 10.1073/pnas.1113649108
Luo, 1997, Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water, Biochemistry, 36, 8413, 10.1021/bi9707133
Malhis, 2015, Computational identification of MoRFs in protein sequences using Hierarchical application of bayes rule, PLoS One, 10, 10.1371/journal.pone.0141603
Monti, 2021, The amazing world of idps in human diseases, Biomolecules, 11, 1, 10.3390/biom11020333
Pelka, 2008, Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes, J. Virol., 82, 7252, 10.1128/JVI.00104-08
Saumya, 2021, Zika virus capsid anchor forms cytotoxic amyloid-like fibrils, Virology, 560, 8, 10.1016/j.virol.2021.04.010
Schwartz, 2019, Adenovirus-associated central nervous system disease in children, J. Pediatr., 205, 130, 10.1016/j.jpeds.2018.09.036
Shoemaker, 2000, Speeding molecular recognition by using the folding funnel: the fly-casting mechanism, Proc. Natl. Acad. Sci. U. S. A, 97, 8868, 10.1073/pnas.160259697
SÖnnichsen, 1992, Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide, Biochemistry, 31, 8790, 10.1021/bi00152a015
Stefani, 2004, Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world, Biochim. Biophys. Acta (BBA) - Mol. Basis Dis., 1739, 5, 10.1016/j.bbadis.2004.08.004
Tompa, 2012, Intrinsically disordered proteins: a 10-year recap, Trends Biochem. Sci., 37, 509, 10.1016/j.tibs.2012.08.004
Uversky, 2018
Uversky, 2008, Intrinsically disordered proteins in human diseases: introducing the D2 concept, Annu. Rev. Biophys., 37, 215, 10.1146/annurev.biophys.37.032807.125924
Whitmore, 2004, DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data, Nucleic Acids Res., 32, W668, 10.1093/nar/gkh371
Wright, 2015, Intrinsically disordered proteins in cellular signalling and regulation, Nat. Rev. Mol. Cell Biol., 16, 18, 10.1038/nrm3920
Xu, 2012, Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field, Proteins, 80, 1715, 10.1002/prot.24065
Xue, 2006, HFIP-induced structures and assemblies of the peptides from the transmembrane domain 4 of membrane protein Nramp1, Biopolym. - Pept. Sci. Sect., 84, 329, 10.1002/bip.20478
